Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems

Ashishsingh Bhatia, H. Hagras
{"title":"Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems","authors":"Ashishsingh Bhatia, H. Hagras","doi":"10.1109/FUZZ45933.2021.9494484","DOIUrl":null,"url":null,"abstract":"Fuzzy Rule Based Systems (FRBSs) can suffer from incomplete and sparse rule bases as a result of selecting a small number of rules from a large universe of potential rules. This may lead to rational gaps creeping into the input output mapping, where sometimes, strongly correlated inputs displaying a linear relationship with the output do not exhibit the same behaviour during inferencing. This paper proposes a technique for identifying and rectifying such gaps for FRBSs using incomplete rule bases in real-world regression problems.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fuzzy Rule Based Systems (FRBSs) can suffer from incomplete and sparse rule bases as a result of selecting a small number of rules from a large universe of potential rules. This may lead to rational gaps creeping into the input output mapping, where sometimes, strongly correlated inputs displaying a linear relationship with the output do not exhibit the same behaviour during inferencing. This paper proposes a technique for identifying and rectifying such gaps for FRBSs using incomplete rule bases in real-world regression problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊规则的回归问题系统中合理间隙的识别与校正
由于从大量潜在规则中选择少量规则,基于模糊规则的系统(FRBSs)可能会遭受规则库不完整和稀疏的问题。这可能会导致输入输出映射中出现合理的间隙,有时,与输出显示线性关系的强相关输入在推理期间不会表现出相同的行为。本文提出了一种在现实世界的回归问题中使用不完整的规则库来识别和纠正FRBSs的这种差距的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI Models for Quality of Experience Prediction in Wireless Networks Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data Necessary and sufficient condition for the existence of Atanassov's Intuitionistic Fuzzy based additive definite integral Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1