Predicting chaotic time series using adaptive wavelet-fuzzy inference system

Y. Lin, F.-Y. Wang
{"title":"Predicting chaotic time series using adaptive wavelet-fuzzy inference system","authors":"Y. Lin, F.-Y. Wang","doi":"10.1109/IVS.2005.1505218","DOIUrl":null,"url":null,"abstract":"Predicting traffic flow is of extreme importance in traffic modeling and congestion control. The traffic data usually exhibit chaotic dynamics that can be readily modeled and analyzed using time series. Traditional tools for time series analysis have been focused on exploring the statistical properties of the data. On the other hand, it has been long observed that times series can be considered as the output of nonlinear dynamic system. The development of computational intelligence methodology and its composing methods including fuzzy logic and neural networks has provided a new powerful tool for time series analysis. The paper represents a novel method of using a hybrid networks following the fuzzy logic inference mechanism to predict chaotic times series.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Predicting traffic flow is of extreme importance in traffic modeling and congestion control. The traffic data usually exhibit chaotic dynamics that can be readily modeled and analyzed using time series. Traditional tools for time series analysis have been focused on exploring the statistical properties of the data. On the other hand, it has been long observed that times series can be considered as the output of nonlinear dynamic system. The development of computational intelligence methodology and its composing methods including fuzzy logic and neural networks has provided a new powerful tool for time series analysis. The paper represents a novel method of using a hybrid networks following the fuzzy logic inference mechanism to predict chaotic times series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应小波模糊推理系统的混沌时间序列预测
交通流预测在交通建模和拥堵控制中具有极其重要的意义。交通数据通常表现为混沌动态,可以很容易地用时间序列建模和分析。传统的时间序列分析工具侧重于探索数据的统计特性。另一方面,人们早就发现时间序列可以看作是非线性动态系统的输出。模糊逻辑和神经网络等计算智能方法论及其构成方法的发展,为时间序列分析提供了新的有力工具。提出了一种基于模糊逻辑推理机制的混合网络预测混沌时间序列的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A statistical based UWB multipath channel model for the indoor environments WPAN applications Visual-based assistance for electric vehicle driving Cooperative driving and lane changing at blind crossings Vehicle localization on a digital map using particles filtering Past, current and future on nonlinear dynamics and noise origins of non-smooth gear transmission dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1