Domain Driven Two-Phase Feature Selection Method Based on Bhattacharyya Distance and Kernel Distance Measurements

Yibing Chen, Lingling Zhang, Jun Li, Yong Shi
{"title":"Domain Driven Two-Phase Feature Selection Method Based on Bhattacharyya Distance and Kernel Distance Measurements","authors":"Yibing Chen, Lingling Zhang, Jun Li, Yong Shi","doi":"10.1109/WI-IAT.2011.61","DOIUrl":null,"url":null,"abstract":"This paper proposes a two-phase feature selection method specific for bioinformatics domain from classification perspective in data mining. In the first phase, Bhattacharyya distance measurement is used for filtering the majority of irrelevant genes. Upon the basis, we apply floating sequential search method (FSSM) to further select informative gene set using kernel distance as measurement of class separability. The verification of colon tissue dataset using support vector machines (SVMs) proves that informative gene set selected by our method is acceptable for disease identification.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes a two-phase feature selection method specific for bioinformatics domain from classification perspective in data mining. In the first phase, Bhattacharyya distance measurement is used for filtering the majority of irrelevant genes. Upon the basis, we apply floating sequential search method (FSSM) to further select informative gene set using kernel distance as measurement of class separability. The verification of colon tissue dataset using support vector machines (SVMs) proves that informative gene set selected by our method is acceptable for disease identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Bhattacharyya距离和核距离测量的域驱动两相特征选择方法
从数据挖掘的分类角度出发,提出了一种针对生物信息学领域的两阶段特征选择方法。在第一阶段,使用巴塔查里亚距离测量来过滤大部分不相关的基因。在此基础上,采用浮动顺序搜索方法(FSSM),以核距离作为类可分性度量,进一步选择信息基因集。使用支持向量机(svm)对结肠组织数据集进行验证,证明了该方法选择的信息基因集可用于疾病识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Slovak Blog Clustering Enhanced by Mining the Web Comments Automatic Face Annotation in News Images by Mining the Web Exploiting Additional Dimensions as Virtual Items on Top-N Recommender Systems Supporting Agent Systems in the Programming Language A Software Agent Framework for Exploiting Demand-Side Consumer Social Networks in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1