ART-R: a novel reinforcement learning algorithm using an ART module for state representation

L. Brignone, M. Howarth
{"title":"ART-R: a novel reinforcement learning algorithm using an ART module for state representation","authors":"L. Brignone, M. Howarth","doi":"10.1109/NNSP.2003.1318082","DOIUrl":null,"url":null,"abstract":"The work introduces a neural network (NN) algorithm capable of merging the fast and stable learning behaviour offered by the adaptive resonance theory (ART) and the advantageous properties of a reinforcement learning agent. The result is ART-R a neural algorithm particularly suited to learning state-action mappings in control applications. A real time example addressing a typical problem found in autonomous robotic assembly is discussed to highlight the achievement of unsupervised and fast learning of an optimal behaviour.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The work introduces a neural network (NN) algorithm capable of merging the fast and stable learning behaviour offered by the adaptive resonance theory (ART) and the advantageous properties of a reinforcement learning agent. The result is ART-R a neural algorithm particularly suited to learning state-action mappings in control applications. A real time example addressing a typical problem found in autonomous robotic assembly is discussed to highlight the achievement of unsupervised and fast learning of an optimal behaviour.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ART- r:一种使用ART模块进行状态表示的新型强化学习算法
该工作介绍了一种神经网络(NN)算法,该算法能够融合自适应共振理论(ART)提供的快速稳定的学习行为和强化学习代理的优势特性。其结果是ART-R,一种特别适合学习控制应用中的状态-动作映射的神经算法。讨论了在自主机器人装配中发现的一个典型问题的实时示例,以突出无监督和快速学习最佳行为的成就。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1