Design of Artificial Neural Networks Using a Memetic Pareto Evolutionary Algorithm Using as Objectives Entropy versus Variation Coefficient

J. C. Fernández, C. Hervás‐Martínez, F. J. Martínez, Manuel Cruz
{"title":"Design of Artificial Neural Networks Using a Memetic Pareto Evolutionary Algorithm Using as Objectives Entropy versus Variation Coefficient","authors":"J. C. Fernández, C. Hervás‐Martínez, F. J. Martínez, Manuel Cruz","doi":"10.1109/ISDA.2009.153","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-classification pattern algorithm using multilayer perceptron neural network models which try to boost two conflicting main objectives of a classifier, a high correct classification rate and a high classification rate for each class. To solve this machine learning problem, we consider a Memetic Pareto Evolutionary approach based on the NSGA2 algorithm (MPENSGA2), where we defined two objectives for determining the goodness of a classifier: the cross-entropy error function and the variation coefficient of its sensitivities, because both measures are continuous functions, making the convergence more robust. Once the Pareto front is built, we use an automatic selection methodology of individuals: the best model in accuracy (upper extreme in the Pareto front). This methodology is applied to solve six benchmark classification problems, obtaining promising results and achieving a high classification rate in the generalization set with an acceptable level of accuracy for each class.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a multi-classification pattern algorithm using multilayer perceptron neural network models which try to boost two conflicting main objectives of a classifier, a high correct classification rate and a high classification rate for each class. To solve this machine learning problem, we consider a Memetic Pareto Evolutionary approach based on the NSGA2 algorithm (MPENSGA2), where we defined two objectives for determining the goodness of a classifier: the cross-entropy error function and the variation coefficient of its sensitivities, because both measures are continuous functions, making the convergence more robust. Once the Pareto front is built, we use an automatic selection methodology of individuals: the best model in accuracy (upper extreme in the Pareto front). This methodology is applied to solve six benchmark classification problems, obtaining promising results and achieving a high classification rate in the generalization set with an acceptable level of accuracy for each class.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以熵与变异系数为目标的模因帕累托进化算法人工神经网络设计
本文提出了一种基于多层感知器神经网络模型的多分类模式算法,该算法试图提高分类器的两个相互冲突的主要目标,即每个类别的高正确分类率和高分类率。为了解决这个机器学习问题,我们考虑了一种基于NSGA2算法(MPENSGA2)的模因帕累托进化方法,其中我们定义了两个目标来确定分类器的好坏:交叉熵误差函数和其灵敏度的变异系数,因为这两个度量都是连续函数,使得收敛更加鲁棒。一旦建立了帕累托前沿,我们使用个人的自动选择方法:准确性最好的模型(帕累托前沿的上极值)。应用该方法解决了6个基准分类问题,得到了很好的结果,在泛化集中实现了较高的分类率,每个类的准确率都在可接受的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EACImpute: An Evolutionary Algorithm for Clustering-Based Imputation An FPGA Based Arrhythmia Recognition System for Wearable Applications Knowledge Discovery Approaches for Early Detection of Decompensation Conditions in Heart Failure Patients Evaluating an Intelligent Business System with a Fuzzy Multi-criteria Approach Time Analysis of Forum Evolution as Support Tool for E-Moderating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1