Shape selection partitioning algorithm for Gaussian inverse Wishart probability hypothesis density filter for extended target tracking

Peng Li, H. Ge, Jinlong Yang, Huanqing Zhang
{"title":"Shape selection partitioning algorithm for Gaussian inverse Wishart probability hypothesis density filter for extended target tracking","authors":"Peng Li, H. Ge, Jinlong Yang, Huanqing Zhang","doi":"10.1049/iet-spr.2015.0503","DOIUrl":null,"url":null,"abstract":"The Gaussian inverse Wishart probability hypothesis density (GIW-PHD) filter is a promising approach for tracking an unknown number of extended targets. However, it does not achieve satisfactory performance if targets in different sizes are spatially close and manoeuvring because the partitioning methods are sensitive to manoeuvres. To solve this problem, the authors propose the shape selection partitioning (SSP) measurement partitioning algorithm. The proposed algorithm first calculates potential centres and shapes of targets. It then combines each centre with different shapes to divide measurements into subcells. Accordingly, some candidate partitions can be obtained. Finally, it selects the most likely candidate partition and outputs the corresponding subcells. Simulation results show that the application of SSP to the GIW-PHD filter can achieve better performance when targets are spatially close and manoeuvring, which leads to a lower optimal subpattern assignment distance and a higher accuracy of the sum of weights.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2015.0503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The Gaussian inverse Wishart probability hypothesis density (GIW-PHD) filter is a promising approach for tracking an unknown number of extended targets. However, it does not achieve satisfactory performance if targets in different sizes are spatially close and manoeuvring because the partitioning methods are sensitive to manoeuvres. To solve this problem, the authors propose the shape selection partitioning (SSP) measurement partitioning algorithm. The proposed algorithm first calculates potential centres and shapes of targets. It then combines each centre with different shapes to divide measurements into subcells. Accordingly, some candidate partitions can be obtained. Finally, it selects the most likely candidate partition and outputs the corresponding subcells. Simulation results show that the application of SSP to the GIW-PHD filter can achieve better performance when targets are spatially close and manoeuvring, which leads to a lower optimal subpattern assignment distance and a higher accuracy of the sum of weights.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向扩展目标跟踪的高斯反Wishart概率假设密度滤波器的形状选择分割算法
高斯逆Wishart概率假设密度(GIW-PHD)滤波器是一种很有前途的跟踪未知数量扩展目标的方法。但是,当不同大小的目标在空间上距离较近且具有机动性时,由于分割方法对机动比较敏感,不能达到令人满意的分割效果。为了解决这一问题,作者提出了形状选择划分(SSP)测量划分算法。该算法首先计算目标的潜在中心和形状。然后,它将每个中心与不同的形状结合起来,将测量结果划分为子细胞。因此,可以获得一些候选分区。最后,它选择最可能的候选分区并输出相应的子单元格。仿真结果表明,将SSP应用到GIW-PHD滤波器中,可以在目标空间接近和机动时获得更好的性能,使最优子模式分配距离更小,权值和精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An order insensitive optimal generalised sequential fusion estimation for stochastic uncertain multi-sensor systems with correlated noise Spatial Multiplexing in Near Field MIMO Channels with Reconfigurable Intelligent Surfaces An improved segmentation technique for multilevel thresholding of crop image using cuckoo search algorithm based on recursive minimum cross entropy Advances in image processing using machine learning techniques An unsupervised monocular image depth prediction algorithm using Fourier domain analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1