High utility differential privacy based on smooth sensitivity and individual ranking

Fagen Song, Tinghuai Ma
{"title":"High utility differential privacy based on smooth sensitivity and individual ranking","authors":"Fagen Song, Tinghuai Ma","doi":"10.1504/IJICS.2021.116306","DOIUrl":null,"url":null,"abstract":"Differential privacy can provide provable privacy security protection. In recent years, a great improvement has been made, however, in practical applications, the utility of original data is highly susceptible to noise, and thus, it limits its application and extension. To address the above problem, a new differential privacy method based on smooth sensitivity has been proposed in this paper. Using this method, the dataset's utility is improved greatly by reducing the amount of noise that is added, and this was validated by experiments.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJICS.2021.116306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Differential privacy can provide provable privacy security protection. In recent years, a great improvement has been made, however, in practical applications, the utility of original data is highly susceptible to noise, and thus, it limits its application and extension. To address the above problem, a new differential privacy method based on smooth sensitivity has been proposed in this paper. Using this method, the dataset's utility is improved greatly by reducing the amount of noise that is added, and this was validated by experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于平滑敏感性和个体排名的高效用差分隐私
差分隐私可以提供可证明的隐私安全保护。近年来,该方法取得了很大的进步,但在实际应用中,原始数据的实用性极易受到噪声的影响,从而限制了其应用和扩展。针对上述问题,本文提出了一种基于平滑灵敏度的差分隐私算法。使用该方法,通过减少噪声的添加量,大大提高了数据集的实用性,并通过实验验证了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1