Range clustering: An algorithm for empirical evaluation of classical clustering algorithms

N. Arora, Sandeep Jain, S. Verma
{"title":"Range clustering: An algorithm for empirical evaluation of classical clustering algorithms","authors":"N. Arora, Sandeep Jain, S. Verma","doi":"10.1109/IC3.2016.7880242","DOIUrl":null,"url":null,"abstract":"Cluster analysis is a principal method in analytics domain of data mining. The algorithm used for clustering directly influences the results obtained from applying the clustering algorithm (clusters). Data clustering is done in order to identify the patterns and trends not identifiable from just looking at the data. Clustering may be supervised (if the machine training data set is available) or unsupervised (if the machine training data set is not available). Unsupervised clustering is usually done using k-Means Algorithm (using any distance, the most common being Euclidean and Manhattan Distance). The drawback of k-means algorithm for a large set are the rigorous calculations that need to be done to cluster a data set into multiple data subsets for every single iteration, thereby limiting its efficiency and use for large data sets. We propose a range based single pass clustering algorithm that clusters data on the basis of the range which it falls in, where the ranges are calculated using simple arithmetic mean between two values. The proposed algorithm is compared against the standard k-means algorithm (using Euclidean Distance and Manhattan Distance).","PeriodicalId":294210,"journal":{"name":"2016 Ninth International Conference on Contemporary Computing (IC3)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Ninth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2016.7880242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cluster analysis is a principal method in analytics domain of data mining. The algorithm used for clustering directly influences the results obtained from applying the clustering algorithm (clusters). Data clustering is done in order to identify the patterns and trends not identifiable from just looking at the data. Clustering may be supervised (if the machine training data set is available) or unsupervised (if the machine training data set is not available). Unsupervised clustering is usually done using k-Means Algorithm (using any distance, the most common being Euclidean and Manhattan Distance). The drawback of k-means algorithm for a large set are the rigorous calculations that need to be done to cluster a data set into multiple data subsets for every single iteration, thereby limiting its efficiency and use for large data sets. We propose a range based single pass clustering algorithm that clusters data on the basis of the range which it falls in, where the ranges are calculated using simple arithmetic mean between two values. The proposed algorithm is compared against the standard k-means algorithm (using Euclidean Distance and Manhattan Distance).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
范围聚类:一种对经典聚类算法进行经验评价的算法
聚类分析是数据挖掘分析领域的一种主要方法。聚类所用的算法直接影响聚类算法(聚类)的应用结果。数据聚类是为了识别仅通过查看数据无法识别的模式和趋势。聚类可以是有监督的(如果机器训练数据集可用)或无监督的(如果机器训练数据集不可用)。无监督聚类通常使用k-Means算法(使用任何距离,最常见的是欧几里得和曼哈顿距离)。对于大型数据集,k-means算法的缺点是每次迭代都需要进行严格的计算才能将数据集聚类为多个数据子集,从而限制了其效率和对大型数据集的使用。我们提出了一种基于范围的单次聚类算法,该算法根据数据所属的范围对数据进行聚类,其中范围是使用两个值之间的简单算术平均值计算的。将该算法与标准k-means算法(使用欧几里得距离和曼哈顿距离)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intuitionistic fuzzy ant colony optimization for course sequencing in E-learning JIIT-edu: An android application for college faculty Exploring academia industry linkage through co-authorship social networks Framework to extract context vectors from unstructured data using big data analytics Temperature and energy aware scheduling of heterogeneous processors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1