Server virtualization by user behaviour model using a data mining technique — A preliminary study

D. Prangchumpol, S. Sanguansintukul, P. Tantasanawong
{"title":"Server virtualization by user behaviour model using a data mining technique — A preliminary study","authors":"D. Prangchumpol, S. Sanguansintukul, P. Tantasanawong","doi":"10.1109/ICITST.2009.5402611","DOIUrl":null,"url":null,"abstract":"Server virtualization is the masking of server resources, including the number and identity of individual physical servers, processors, and operating systems, from server users. However, the problem of tuning dynamic resource allocation is a novelty. Managing heterogeneous workloads running within virtual machines is an interesting and challenging topic of server virtualization. This research applied association rule discovery, which is one of the data mining techniques to predict level of user access. The results illustrate that performance of the predictive model for a proxy server is 86.86%. The performance of the predictive model for a web server is 87.18%. Additionally, user behaviors for proxy and web servers are visualized. The results suggest that user behaviors are different in term of workload, day and time usage. This preliminary study may be an approach to improve management of data centers running heterogeneous workloads using server virtualization.","PeriodicalId":251169,"journal":{"name":"2009 International Conference for Internet Technology and Secured Transactions, (ICITST)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference for Internet Technology and Secured Transactions, (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITST.2009.5402611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Server virtualization is the masking of server resources, including the number and identity of individual physical servers, processors, and operating systems, from server users. However, the problem of tuning dynamic resource allocation is a novelty. Managing heterogeneous workloads running within virtual machines is an interesting and challenging topic of server virtualization. This research applied association rule discovery, which is one of the data mining techniques to predict level of user access. The results illustrate that performance of the predictive model for a proxy server is 86.86%. The performance of the predictive model for a web server is 87.18%. Additionally, user behaviors for proxy and web servers are visualized. The results suggest that user behaviors are different in term of workload, day and time usage. This preliminary study may be an approach to improve management of data centers running heterogeneous workloads using server virtualization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
服务器虚拟化中使用用户行为模型的数据挖掘技术的初步研究
服务器虚拟化是对服务器资源的屏蔽,包括对服务器用户屏蔽单个物理服务器、处理器和操作系统的数量和标识。然而,调优动态资源分配的问题是一个新问题。管理在虚拟机中运行的异构工作负载是服务器虚拟化的一个有趣且具有挑战性的主题。本研究应用数据挖掘技术中的关联规则发现来预测用户访问级别。结果表明,该预测模型对代理服务器的性能达到了86.86%。该模型对web服务器的预测性能为87.18%。此外,代理和web服务器的用户行为是可视化的。结果表明,用户行为在工作量、使用天数和使用时间方面存在差异。这项初步研究可能是使用服务器虚拟化改进运行异构工作负载的数据中心管理的一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Usability driven website design — An equine sports case study Grasping contextual awareness inside aworkspace at the entrance to support group interaction Towards security goals in summative e-assessment security Cloud Computing: The impact on digital forensic investigations Evaluation of question classification systems using differing features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1