Iris feature extraction using principally rotated complex wavelet filters (PR-CWF)

C. O. Ukpai, S. Dlay, W. L. Woo
{"title":"Iris feature extraction using principally rotated complex wavelet filters (PR-CWF)","authors":"C. O. Ukpai, S. Dlay, W. L. Woo","doi":"10.1109/ICCVIA.2015.7351904","DOIUrl":null,"url":null,"abstract":"Deriving effective iris feature from the segmented iris image is a crucial step in iris recognition system. In this paper we propose a new iris feature extraction method based on the Principal Texture Pattern (PTP) and dual tree complex wavelet transform (DT-CWT). We compute the principal direction (PD) of the iris texture using principal component analysis (PCA) and obtain the angle θ of the PD. Then, complex wavelet filters CWFs are constructed and rotated in the direction θ of the PD and also in the opposite direction - θ for decomposition of the image into 12 sub-bands using DT-CWT. Rotational invariant and scale invariant features are obtained by combining LL and HL sub-bands at each level. Consequently, channel energies and standard deviations are constructed as feature representation of the iris while SVM is used for classification of iris images. Our experiments demonstrate the superiority of the proposed method on CASIA iris databases, over existing methods.","PeriodicalId":419122,"journal":{"name":"International Conference on Computer Vision and Image Analysis Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision and Image Analysis Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVIA.2015.7351904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Deriving effective iris feature from the segmented iris image is a crucial step in iris recognition system. In this paper we propose a new iris feature extraction method based on the Principal Texture Pattern (PTP) and dual tree complex wavelet transform (DT-CWT). We compute the principal direction (PD) of the iris texture using principal component analysis (PCA) and obtain the angle θ of the PD. Then, complex wavelet filters CWFs are constructed and rotated in the direction θ of the PD and also in the opposite direction - θ for decomposition of the image into 12 sub-bands using DT-CWT. Rotational invariant and scale invariant features are obtained by combining LL and HL sub-bands at each level. Consequently, channel energies and standard deviations are constructed as feature representation of the iris while SVM is used for classification of iris images. Our experiments demonstrate the superiority of the proposed method on CASIA iris databases, over existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主旋转复小波滤波器的虹膜特征提取
从分割后的虹膜图像中提取有效的虹膜特征是虹膜识别系统的关键步骤。本文提出了一种基于主纹理模式(PTP)和对偶树复小波变换(DT-CWT)的虹膜特征提取方法。利用主成分分析(PCA)计算虹膜纹理的主方向(PD),得到主方向的角度θ。然后,构造复小波滤波器cwf,并沿PD方向θ和相反方向- θ旋转,利用DT-CWT将图像分解为12个子带。在每一层上结合LL子带和HL子带得到旋转不变性和尺度不变性特征。因此,构建通道能量和标准差作为虹膜的特征表示,并使用SVM对虹膜图像进行分类。我们的实验证明了该方法在CASIA虹膜数据库上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Labeling abnormalities in video based complex Human-Object Interactions by robust affordance modelling Implementation of optical correlator for face recognition applications Modeling information resources and application using ontological engineering Accurate, swift and noiseless image binarization Study with RK4 & ANOVA the location of the tumor at the smallest time for multi-images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1