{"title":"Spatio-Temporal Texture Features for Presentation Attack Detection in Biometric Systems","authors":"S. Pan, F. Deravi","doi":"10.1109/EST.2019.8806220","DOIUrl":null,"url":null,"abstract":"Spatio-temporal information is valuable as a discriminative cue for presentation attack detection, where the temporal texture changes and fine-grained motions (such as eye blinking) can be indicative of some types of spoofing attacks. In this paper, we propose a novel spatio-temporal feature, based on motion history, which can offer an efficient way to encapsulate temporal texture changes. Patterns of motion history are used as primary features followed by secondary feature extraction using Local Binary Patterns and Convolutional Neural Networks, and evaluated using the Replay Attack and CASIA-FASD datasets, demonstrating the effectiveness of the proposed approach.","PeriodicalId":102238,"journal":{"name":"2019 Eighth International Conference on Emerging Security Technologies (EST)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eighth International Conference on Emerging Security Technologies (EST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2019.8806220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Spatio-temporal information is valuable as a discriminative cue for presentation attack detection, where the temporal texture changes and fine-grained motions (such as eye blinking) can be indicative of some types of spoofing attacks. In this paper, we propose a novel spatio-temporal feature, based on motion history, which can offer an efficient way to encapsulate temporal texture changes. Patterns of motion history are used as primary features followed by secondary feature extraction using Local Binary Patterns and Convolutional Neural Networks, and evaluated using the Replay Attack and CASIA-FASD datasets, demonstrating the effectiveness of the proposed approach.