System-on-chip based Automated Optic Disk Segmentation in Retinal Images

N. A. Kumar, G. S. Satapathi, M. Anuradha
{"title":"System-on-chip based Automated Optic Disk Segmentation in Retinal Images","authors":"N. A. Kumar, G. S. Satapathi, M. Anuradha","doi":"10.1109/ICEEICT53079.2022.9768415","DOIUrl":null,"url":null,"abstract":"In this paper a novel technique on automated optical disk (OD) segmentation is proposed. The proposed OD algorithm depends on morphological based algorithm. This technique is assessed on openly accessible standard data sets DRIONS. The average accuracy rate of proposed segmented technique is 97.6% on DRIONS database. The proposed algorithm achieved Average Sensitivity, Average Specificity and Average Overlap of 93.1 %, 98.4% and 86.3% respectively on DRIONS data sets. Test results shows the algorithm is superior with comparable execution time over existing OD algorithms. Further, the algorithm has been implemented in System-on-chip (Zync-7000) kit.","PeriodicalId":201910,"journal":{"name":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT53079.2022.9768415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a novel technique on automated optical disk (OD) segmentation is proposed. The proposed OD algorithm depends on morphological based algorithm. This technique is assessed on openly accessible standard data sets DRIONS. The average accuracy rate of proposed segmented technique is 97.6% on DRIONS database. The proposed algorithm achieved Average Sensitivity, Average Specificity and Average Overlap of 93.1 %, 98.4% and 86.3% respectively on DRIONS data sets. Test results shows the algorithm is superior with comparable execution time over existing OD algorithms. Further, the algorithm has been implemented in System-on-chip (Zync-7000) kit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于片上系统的视网膜图像自动视盘分割
提出了一种新的光盘自动分割技术。提出的OD算法依赖于基于形态学的算法。该技术在可公开访问的标准数据集DRIONS上进行了评估。该方法在DRIONS数据库上的平均准确率为97.6%。该算法在DRIONS数据集上的平均灵敏度、平均特异性和平均重叠度分别为93.1%、98.4%和86.3%。测试结果表明,该算法在执行时间上优于现有的OD算法。此外,该算法已在片上系统(Zync-7000)套件中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Packet Transmission using Radio Access Protocol for Intra-Cluster Communications in Mobile Ad hoc Networks Performance of Combined RF and non-RF based Energy Harvesting scheme for Multi-Relay Cooperative Cognitive Radio Network Image Recognition, Classification and Analysis Using Convolutional Neural Networks An Optimized technique for a Sapid Motor pooling Tariff Forecasting System Pneumothorax Segmentation from Chest X-Rays Using U-Net/U-Net++ Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1