Robust concrete crack recognition based on improved image segmentation and machine learning

Qian-Cheng Zhao, Jiang Shao, Tianlong Yang
{"title":"Robust concrete crack recognition based on improved image segmentation and machine learning","authors":"Qian-Cheng Zhao, Jiang Shao, Tianlong Yang","doi":"10.1117/12.2511359","DOIUrl":null,"url":null,"abstract":"This paper presents an automatical crack recognition approach. Compared with the existing methods, it has a significant increase in robustness and efficiency when faced with widely varying field conditions. Inherent characteristics of crack images are exploited using proportional segmentation, combined with robust feature extraction to improve machine learning classifier performance. Experiments show that this method perform well in crack images recognition across different concrete conditions.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2511359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an automatical crack recognition approach. Compared with the existing methods, it has a significant increase in robustness and efficiency when faced with widely varying field conditions. Inherent characteristics of crack images are exploited using proportional segmentation, combined with robust feature extraction to improve machine learning classifier performance. Experiments show that this method perform well in crack images recognition across different concrete conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进图像分割和机器学习的鲁棒混凝土裂缝识别
本文提出了一种自动识别裂纹的方法。与现有方法相比,该方法在面对广泛变化的现场条件时,鲁棒性和效率显著提高。采用比例分割方法,结合鲁棒特征提取,利用裂纹图像的固有特征,提高机器学习分类器的性能。实验表明,该方法对不同混凝土条件下的裂纹图像识别效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel two-dimensional inductive sensor based on planar coils Combining compound eyes and human eye: a hybrid bionic imaging method for FOV extension and foveated vision Measurement of deionized water density based on single silicon sphere Research of variable-frequency big current calibration The optimization of segment’s axial support point for large astronomical telescopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1