A fast genetic algorithm for solving the maximum clique problem

Suqi Zhang, Jing Wang, Qing Wu, Jin Zhan
{"title":"A fast genetic algorithm for solving the maximum clique problem","authors":"Suqi Zhang, Jing Wang, Qing Wu, Jin Zhan","doi":"10.1109/ICNC.2014.6975933","DOIUrl":null,"url":null,"abstract":"Aiming at the defects of Genetic Algorithm (GA) for solving the Maximum Clique Problem (MCP) in more complicated, long-running and poor generality, a fast genetic algorithm (FGA) is proposed in this paper. A new chromosome repair method on the degree, elitist selection based on random repairing, uniform crossover and inversion mutation are adopted in the new algorithm. These components can speed up the search and effectively prevent the algorithm from trapping into the local optimum. The algorithm was tested on DIMACS benchmark graphs. Experimental results show that FGA has better performance and high generality.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Aiming at the defects of Genetic Algorithm (GA) for solving the Maximum Clique Problem (MCP) in more complicated, long-running and poor generality, a fast genetic algorithm (FGA) is proposed in this paper. A new chromosome repair method on the degree, elitist selection based on random repairing, uniform crossover and inversion mutation are adopted in the new algorithm. These components can speed up the search and effectively prevent the algorithm from trapping into the local optimum. The algorithm was tested on DIMACS benchmark graphs. Experimental results show that FGA has better performance and high generality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解最大团问题的快速遗传算法
针对遗传算法求解最大团问题(MCP)复杂、耗时长、通用性差的缺点,提出了一种快速遗传算法。该算法采用了一种新的基于程度的染色体修复方法、基于随机修复的精英选择、均匀交叉和反转突变。这些成分可以加快搜索速度,有效地防止算法陷入局部最优。在DIMACS基准图上对算法进行了测试。实验结果表明,该算法具有较好的性能和较高的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph based K-nearest neighbor minutiae clustering for fingerprint recognition Applications of artificial intelligence technologies in credit scoring: A survey of literature Construction of linear dynamic gene regulatory network based on feedforward neural network A new dynamic clustering method based on nuclear field A multi-objective ant colony optimization algorithm based on the Physarum-inspired mathematical model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1