PrivacyContext: identifying malicious mobile privacy leak using program context

Xiaolei Wang, Yuexiang Yang
{"title":"PrivacyContext: identifying malicious mobile privacy leak using program context","authors":"Xiaolei Wang, Yuexiang Yang","doi":"10.1504/ijics.2019.10024486","DOIUrl":null,"url":null,"abstract":"Serious concerns have been raised about user's privacy leak in mobile apps, and many detection approaches are proposed. To evade detection, new mobile malware starts to mimic privacy-related behaviours of benign apps, and mix malicious privacy leak with benign ones to reduce the chance of being observed. Since prior proposed approaches primarily focus on the privacy leak discovery, these evasive techniques will make differentiating between malicious and benign privacy disclosures difficult during privacy leak analysis. In this paper, we propose PrivacyContext to identify malicious privacy leak using context. PrivacyContext can be used to purify privacy leak detection results for automatic and easy interpretation by filtering benign privacy disclosures. Experiments show PrivacyContext can perform an effective and efficient static privacy disclosure analysis enhancement and identify malicious privacy leak with 92.73% true positive rate. Evaluation also indicates that to keep the accuracy of privacy disclosure classification, our proposed contexts are all necessary.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijics.2019.10024486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Serious concerns have been raised about user's privacy leak in mobile apps, and many detection approaches are proposed. To evade detection, new mobile malware starts to mimic privacy-related behaviours of benign apps, and mix malicious privacy leak with benign ones to reduce the chance of being observed. Since prior proposed approaches primarily focus on the privacy leak discovery, these evasive techniques will make differentiating between malicious and benign privacy disclosures difficult during privacy leak analysis. In this paper, we propose PrivacyContext to identify malicious privacy leak using context. PrivacyContext can be used to purify privacy leak detection results for automatic and easy interpretation by filtering benign privacy disclosures. Experiments show PrivacyContext can perform an effective and efficient static privacy disclosure analysis enhancement and identify malicious privacy leak with 92.73% true positive rate. Evaluation also indicates that to keep the accuracy of privacy disclosure classification, our proposed contexts are all necessary.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PrivacyContext:使用程序上下文识别恶意移动隐私泄漏
移动应用中用户隐私泄露的问题引起了人们的严重关注,并提出了许多检测方法。为了逃避检测,新的移动恶意软件开始模仿良性应用的隐私相关行为,并将恶意隐私泄露与良性应用混合在一起,以减少被发现的机会。由于先前提出的方法主要关注隐私泄漏发现,这些规避技术将使隐私泄漏分析中难以区分恶意和良性隐私泄露。在本文中,我们提出了PrivacyContext来使用上下文识别恶意隐私泄漏。PrivacyContext可以用来净化隐私泄漏检测结果,通过过滤良性的隐私泄露来实现自动和容易的解释。实验表明,PrivacyContext对静态隐私泄露分析进行了有效、高效的增强,识别出恶意隐私泄露的真阳性率为92.73%。评估还表明,为了保持隐私披露分类的准确性,我们所提出的上下文都是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1