DCTCN: Deep Complex Temporal Convolutional Network for Real Time Speech Enhancement

Huanbin Zou, Jie Zhu
{"title":"DCTCN: Deep Complex Temporal Convolutional Network for Real Time Speech Enhancement","authors":"Huanbin Zou, Jie Zhu","doi":"10.1109/ICICIP53388.2021.9642159","DOIUrl":null,"url":null,"abstract":"Recently, deep learning-based speech enhancement approaches have been researched extensively. Most methods focus on reconstructing the target clean speech’s magnitude spectrum from noisy speech’s magnitude spectrum, and then combine the noisy speech’s phase spectrum to synthesize the waveform. In this paper, we propose a complex network-based model called Deep Complex Temporal Convolutional Network (DCTCN) to estimate the complex-valued short-time Fourier transform (STFT) of target speech from noisy speech. We design a temporal convolutional network (TCN) block based on complex dilated causal convolution. In our proposed DCTCN, we achieve an outstanding denoising performance with a low complexity of 1.33M parameters. The experiments are conducted on the DNS Challenge dataset, and the results show that complex operations and TCN blocks have significant positive effects in noise suppression.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recently, deep learning-based speech enhancement approaches have been researched extensively. Most methods focus on reconstructing the target clean speech’s magnitude spectrum from noisy speech’s magnitude spectrum, and then combine the noisy speech’s phase spectrum to synthesize the waveform. In this paper, we propose a complex network-based model called Deep Complex Temporal Convolutional Network (DCTCN) to estimate the complex-valued short-time Fourier transform (STFT) of target speech from noisy speech. We design a temporal convolutional network (TCN) block based on complex dilated causal convolution. In our proposed DCTCN, we achieve an outstanding denoising performance with a low complexity of 1.33M parameters. The experiments are conducted on the DNS Challenge dataset, and the results show that complex operations and TCN blocks have significant positive effects in noise suppression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于实时语音增强的深度复杂时间卷积网络
近年来,基于深度学习的语音增强方法得到了广泛的研究。大多数方法都是将噪声语音的幅值谱重构为目标干净语音的幅值谱,然后将噪声语音的相位谱结合起来合成波形。本文提出了一种基于复杂网络的深度复杂时间卷积网络(DCTCN)模型,用于从噪声语音中估计目标语音的复值短时傅里叶变换(STFT)。我们设计了一个基于复扩展因果卷积的时间卷积网络(TCN)块。在我们提出的DCTCN中,我们以1.33M的低复杂度实现了出色的去噪性能。在DNS Challenge数据集上进行了实验,结果表明,复杂操作和TCN块对噪声抑制有显著的积极作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel RBF neural network based recognition of human upper limb active motion intention Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using Zhang Time Discretization (ZTD) Integrated Res2Net combined with Seesaw loss for Long-Tailed PCG signal classification On Pinning Synchronization of An Array of Linearly Coupled Dynamical Network Design and Implementation of Braking Control for Hybrid Electric Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1