Discriminative and generative machine learning approaches towards robust phoneme classification

J. Yousafzai, M. Ager, Z. Cvetković, Peter Sollich
{"title":"Discriminative and generative machine learning approaches towards robust phoneme classification","authors":"J. Yousafzai, M. Ager, Z. Cvetković, Peter Sollich","doi":"10.1109/ITA.2008.4601091","DOIUrl":null,"url":null,"abstract":"Robustness of classification of isolated phoneme segments using discriminative and generative classifiers is investigated for the acoustic waveform and PLP speech representations. The two approaches used are support vector machines (SVMs) and mixtures of probabilistic PCA (MPPCA). While recognition in the PLP domain attains superb accuracy on clean data, it is significantly affected by mismatch between training and test noise levels. Classification in the high-dimensional acoustic waveform domain, on the other hand, is more robust in the presence of additive white Gaussian noise. We also show some results on the effects of custom-designed kernel functions for SVM classification in the acoustic waveform domain.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Robustness of classification of isolated phoneme segments using discriminative and generative classifiers is investigated for the acoustic waveform and PLP speech representations. The two approaches used are support vector machines (SVMs) and mixtures of probabilistic PCA (MPPCA). While recognition in the PLP domain attains superb accuracy on clean data, it is significantly affected by mismatch between training and test noise levels. Classification in the high-dimensional acoustic waveform domain, on the other hand, is more robust in the presence of additive white Gaussian noise. We also show some results on the effects of custom-designed kernel functions for SVM classification in the acoustic waveform domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
判别和生成机器学习方法实现稳健的音素分类
对声学波形和PLP语音表示进行了判别分类器和生成分类器对孤立音素段分类的鲁棒性研究。使用的两种方法是支持向量机(svm)和混合概率PCA (MPPCA)。虽然PLP领域的识别在干净数据上获得了极高的准确性,但它受到训练和测试噪声水平之间不匹配的显著影响。另一方面,高维声波波形域的分类在加性高斯白噪声的存在下更加稳健。我们还展示了自定义设计的核函数在声学波形域用于支持向量机分类的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cellular systems with multicell processing and conferencing links between mobile stations On resource allocation in two-way limited feedback beamforming systems Can the storage capacity of memories built from unreliable components be determined? The application of distributed spectrum sensing and available resource maps to cognitive radio systems Feedback schemes for multiuser MIMO-OFDM downlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1