18.7 A 0.7V, 2.35% 3σ-Accuracy Bandgap Reference in 12nm CMOS

Yi-Wen Chen, J. Horng, Chin-Ho Chang, A. Kundu, Y. Peng, Mark Chen
{"title":"18.7 A 0.7V, 2.35% 3σ-Accuracy Bandgap Reference in 12nm CMOS","authors":"Yi-Wen Chen, J. Horng, Chin-Ho Chang, A. Kundu, Y. Peng, Mark Chen","doi":"10.1109/ISSCC.2019.8662339","DOIUrl":null,"url":null,"abstract":"Bandgap reference (BGR) circuits are widely used due to their stable output voltage over process, supply voltage and temperature variations. Reference voltage stability is critical for data-acquisition applications and lower supply voltages can reduce the power of mixed-signal systems. However BGR for analog circuits is one of the bottlenecks for sub-1V supply operation because BGR supply voltage is limited by VEB+VDS [1]. VEB refers to the emitter-base voltage of a pnp transistor which is limited to ~0.6 to 0.7V due to silicon junction cut-in voltage, while VDS is the drain-source saturation voltage of a current-mirror. The BGR temperature dependence is decided by the weighted sum of proportional-to-absolute-temperature(PTAT) and complementary-to-absolute-temperature (CTAT) terms. An alternative PTAT generator can be implemented by dVGS (gate-to-source voltage difference) of a MOS pair in subthreshold [2]. The CTAT generator can be implemented by special devices or using the gate-source voltage VGS of subthreshold MOSFETs. Although the VGS of a subthreshold MOSFET is smaller than emitter-base voltage of a pnp transistor, the MOSFET model inaccuracy in the subthreshold region and high process-dependent characteristic of MOSFET gate-source voltage induces high variation for voltage reference circuits.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"61 47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Bandgap reference (BGR) circuits are widely used due to their stable output voltage over process, supply voltage and temperature variations. Reference voltage stability is critical for data-acquisition applications and lower supply voltages can reduce the power of mixed-signal systems. However BGR for analog circuits is one of the bottlenecks for sub-1V supply operation because BGR supply voltage is limited by VEB+VDS [1]. VEB refers to the emitter-base voltage of a pnp transistor which is limited to ~0.6 to 0.7V due to silicon junction cut-in voltage, while VDS is the drain-source saturation voltage of a current-mirror. The BGR temperature dependence is decided by the weighted sum of proportional-to-absolute-temperature(PTAT) and complementary-to-absolute-temperature (CTAT) terms. An alternative PTAT generator can be implemented by dVGS (gate-to-source voltage difference) of a MOS pair in subthreshold [2]. The CTAT generator can be implemented by special devices or using the gate-source voltage VGS of subthreshold MOSFETs. Although the VGS of a subthreshold MOSFET is smaller than emitter-base voltage of a pnp transistor, the MOSFET model inaccuracy in the subthreshold region and high process-dependent characteristic of MOSFET gate-source voltage induces high variation for voltage reference circuits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
18.7 A 0.7V, 2.35% 3σ-精度的12nm CMOS带隙参考
带隙参考电路由于其稳定的输出电压、电源电压和温度变化而被广泛应用。参考电压稳定性对数据采集应用至关重要,较低的电源电压可以降低混合信号系统的功率。然而,模拟电路的BGR是sub-1V供电运行的瓶颈之一,因为BGR供电电压受到VEB+VDS[1]的限制。VEB是指pnp晶体管的发射极电压,由于硅结的切断电压限制在~0.6 ~ 0.7V,而VDS是电流镜的漏源饱和电压。BGR温度依赖性由比例-绝对温度(PTAT)项和互补-绝对温度(CTAT)项加权和决定。另一种PTAT发生器可以通过在亚阈值[2]中MOS对的dVGS(门源电压差)来实现。CTAT发生器可以通过特殊器件实现,也可以利用亚阈值mosfet的栅源电压VGS实现。尽管亚阈值MOSFET的VGS小于pnp晶体管的发射极电压,但由于MOSFET模型在亚阈值区域的不准确性和MOSFET栅极源电压的高工艺依赖性特性,导致参考电压电路的变化很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
27.2 An Adiabatic Sense and Set Rectifier for Improved Maximum-Power-Point Tracking in Piezoelectric Harvesting with 541% Energy Extraction Gain 22.7 A Programmable Wireless EEG Monitoring SoC with Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy Control 2.5 A 40×40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control 11.2 A CMOS Biosensor Array with 1024 3-Electrode Voltammetry Pixels and 93dB Dynamic Range 11.3 A Capacitive Biosensor for Cancer Diagnosis Using a Functionalized Microneedle and a 13.7b-Resolution Capacitance-to-Digital Converter from 1 to 100nF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1