A model for network traffic anomaly detection

Nguyễn Hà Dương, Hoang Dang Hai
{"title":"A model for network traffic anomaly detection","authors":"Nguyễn Hà Dương, Hoang Dang Hai","doi":"10.1109/ICACT.2016.7423586","DOIUrl":null,"url":null,"abstract":"Network traffic anomaly detection can find unusual events cause by hacker activity. Most research in this area focus on supervised and unsupervised model. In this work, we proposed a semi-supervised model based on combination of Mahalanobis distance and principal component analysis for network traffic anomaly detection. We also experiment clustering technique with suitable features to remove noise in training data along with some enhanced detection technique. With the approach of combining anomaly detection and signature-based detection system, we believe the quality of normal dataset will greatly improve.","PeriodicalId":125854,"journal":{"name":"2016 18th International Conference on Advanced Communication Technology (ICACT)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACT.2016.7423586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Network traffic anomaly detection can find unusual events cause by hacker activity. Most research in this area focus on supervised and unsupervised model. In this work, we proposed a semi-supervised model based on combination of Mahalanobis distance and principal component analysis for network traffic anomaly detection. We also experiment clustering technique with suitable features to remove noise in training data along with some enhanced detection technique. With the approach of combining anomaly detection and signature-based detection system, we believe the quality of normal dataset will greatly improve.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络流量异常检测模型
网络流量异常检测可以发现黑客活动引起的异常事件。该领域的研究主要集中在有监督模型和无监督模型上。本文提出了一种基于马氏距离和主成分分析相结合的网络流量异常检测半监督模型。我们还尝试了使用合适特征的聚类技术以及一些增强的检测技术来去除训练数据中的噪声。通过将异常检测与基于签名的检测系统相结合的方法,我们相信正常数据集的质量将得到极大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DNSNA: DNS name autoconfiguration for Internet of Things devices A novel multi-carrier waveform with high spectral efficiency: Semi-orthogonal frequency division multiplexing Adaptive spectral co-clustering for multiview data Efficient Doppler mitigation for high-speed rail communications Supply and demand management system based on consumption pattern analysis and tariff for cost minimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1