Dridex: Analysis of the traffic and automatic generation of IOCs

L. Rudman, B. Irwin
{"title":"Dridex: Analysis of the traffic and automatic generation of IOCs","authors":"L. Rudman, B. Irwin","doi":"10.1109/ISSA.2016.7802932","DOIUrl":null,"url":null,"abstract":"In this paper we present a framework that generates network Indicators of Compromise (IOC) automatically from a malware sample after dynamic runtime analysis. The framework addresses the limitations of manual Indicator of Compromise generation and utilises sandbox environment to perform the malware analysis in. We focus on the generation of network based IOCs from captured traffic files (PCAPs) generated by the dynamic malware analysis. The Cuckoo Sandbox environment is used for the analysis and the setup is described in detail. Accordingly, we discuss the concept of IOCs and the popular formats used as there is currently no standard. As an example of how the proof-of-concept framework can be used, we chose 100 Dridex malware samples and evaluated the traffic and showed what can be used for the generation of network-based IOCs. Results of our system confirm that we can create IOCs from dynamic malware analysis and avoid the legitimate background traffic originating from the sandbox system. We also briefly discuss the sharing of, and application of the generated IOCs and the number of systems that can be used to share them. Lastly we discuss how they can be useful in combating cyber threats.","PeriodicalId":330340,"journal":{"name":"2016 Information Security for South Africa (ISSA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Information Security for South Africa (ISSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSA.2016.7802932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper we present a framework that generates network Indicators of Compromise (IOC) automatically from a malware sample after dynamic runtime analysis. The framework addresses the limitations of manual Indicator of Compromise generation and utilises sandbox environment to perform the malware analysis in. We focus on the generation of network based IOCs from captured traffic files (PCAPs) generated by the dynamic malware analysis. The Cuckoo Sandbox environment is used for the analysis and the setup is described in detail. Accordingly, we discuss the concept of IOCs and the popular formats used as there is currently no standard. As an example of how the proof-of-concept framework can be used, we chose 100 Dridex malware samples and evaluated the traffic and showed what can be used for the generation of network-based IOCs. Results of our system confirm that we can create IOCs from dynamic malware analysis and avoid the legitimate background traffic originating from the sandbox system. We also briefly discuss the sharing of, and application of the generated IOCs and the number of systems that can be used to share them. Lastly we discuss how they can be useful in combating cyber threats.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dridex:流量分析和ioc自动生成
在本文中,我们提出了一个框架,在动态运行时分析后,从恶意软件样本自动生成网络危害指标(IOC)。该框架解决了手工生成危害指示器的局限性,并利用沙盒环境执行恶意软件分析。我们专注于从动态恶意软件分析生成的捕获流量文件(pcap)中生成基于网络的ioc。本文使用Cuckoo Sandbox环境进行分析,并对其设置进行了详细描述。因此,我们将讨论IOCs的概念和流行的格式,因为目前还没有标准。作为概念验证框架如何使用的一个例子,我们选择了100个Dridex恶意软件样本,并评估了流量,并展示了可用于生成基于网络的ioc的方法。我们的系统结果证实,我们可以通过动态恶意软件分析创建IOCs,并避免来自沙箱系统的合法后台流量。我们还简要讨论了生成的ioc的共享和应用,以及可用于共享它们的系统的数量。最后,我们讨论了它们如何在打击网络威胁方面发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PoPI Act - opt-in and opt-out compliance from a data value chain perspective: A South African insurance industry experiment CDMA in signal encryption and information security Specific emitter identification for enhanced access control security Recognizing surgically altered faces using local edge gradient Gabor magnitude pattern Context Aware Mobile Application for mobile devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1