Blind noise estimation-based CT image denoising in tetrolet domain

M. Diwakar, Pardeep Kumar
{"title":"Blind noise estimation-based CT image denoising in tetrolet domain","authors":"M. Diwakar, Pardeep Kumar","doi":"10.1504/ijics.2020.10026779","DOIUrl":null,"url":null,"abstract":"Recently in medical imaging, various cases of cancers have been explored because of high dose radiation in computed tomography (CT) scan examinations. These high radiation doses are given to patients to achieve good quality CT images. Instead of increasing radiation dose, an alternate method is required to get high quality images for diagnosis purpose. In this paper, we propose a method where, the noise of CT images will be estimated using patch-based gradient approximation. Further, estimated noise is used to denoise the CT images in tetrolet domain. In proposed scheme, a locally adaptive-based thresholding in tetrolet domain and non-local means filtering have been performed to suppress noise from CT images. Estimation noise from proposed method has been compared from added noise in CT images and it was observed that noise is almost correctly estimated by proposed method. To verify the strength of noise suppression in proposed scheme, comparison with recent other existing methods have been performed. The PSNR and visual quality of experimental results indicate that the proposed scheme gives excellent outcomes in compare to existing schemes.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijics.2020.10026779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recently in medical imaging, various cases of cancers have been explored because of high dose radiation in computed tomography (CT) scan examinations. These high radiation doses are given to patients to achieve good quality CT images. Instead of increasing radiation dose, an alternate method is required to get high quality images for diagnosis purpose. In this paper, we propose a method where, the noise of CT images will be estimated using patch-based gradient approximation. Further, estimated noise is used to denoise the CT images in tetrolet domain. In proposed scheme, a locally adaptive-based thresholding in tetrolet domain and non-local means filtering have been performed to suppress noise from CT images. Estimation noise from proposed method has been compared from added noise in CT images and it was observed that noise is almost correctly estimated by proposed method. To verify the strength of noise suppression in proposed scheme, comparison with recent other existing methods have been performed. The PSNR and visual quality of experimental results indicate that the proposed scheme gives excellent outcomes in compare to existing schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于盲噪声估计的CT图像tetrolet域去噪
近年来,在医学影像学中,由于计算机断层扫描(CT)扫描检查中的高剂量辐射,已经探讨了各种癌症病例。给予患者高剂量的辐射以获得高质量的CT图像。除了增加辐射剂量外,还需要另一种方法来获得高质量的图像以用于诊断。本文提出了一种基于patch的梯度近似估计CT图像噪声的方法。然后,利用估计的噪声对CT图像进行四小波域去噪。该方法采用局部自适应阈值法和非局部均值滤波来抑制CT图像中的噪声。将所提方法的估计噪声与CT图像中的附加噪声进行了比较,结果表明所提方法的估计噪声基本正确。为了验证所提方案的噪声抑制强度,并与其他现有方法进行了比较。实验结果的PSNR和视觉质量表明,与现有方案相比,该方案具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1