Improved Performance of PMSM using Tunicate Swarm optimization

G. Vishal, J. Pradeep
{"title":"Improved Performance of PMSM using Tunicate Swarm optimization","authors":"G. Vishal, J. Pradeep","doi":"10.1109/ESCI53509.2022.9758351","DOIUrl":null,"url":null,"abstract":"Humans are moving towards a pollution-free environment, Electrical vehicles (EV) could help to achieve this since one of the major contributors to pollution is Conventional vehicles. Increasing the performance of EV's will promote the use of EVs in human civilization. For any electrical machine, performance depends on Time Domain parameters. By optimizing the time domain parameter, the performance increases drastically. With a simple optimized PID controller, the motor could achieve performance similar to other controllers like the Fuzzy logic system. In many papers, PID is tuned using Particle swarm optimization (PSO). Recently, a new biological metaheuristic technique is determined that is Tunicate swarm Algorithm (TSA). This method is better than many biological metaheuristic techniques. In this paper, the TSA is implemented to the PID controller for the Permanent Magnet Synchronous Motor (PMSM) operation thereby improving the Speed response and comparing with the existing PSO and conventional PID controller.","PeriodicalId":436539,"journal":{"name":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI53509.2022.9758351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Humans are moving towards a pollution-free environment, Electrical vehicles (EV) could help to achieve this since one of the major contributors to pollution is Conventional vehicles. Increasing the performance of EV's will promote the use of EVs in human civilization. For any electrical machine, performance depends on Time Domain parameters. By optimizing the time domain parameter, the performance increases drastically. With a simple optimized PID controller, the motor could achieve performance similar to other controllers like the Fuzzy logic system. In many papers, PID is tuned using Particle swarm optimization (PSO). Recently, a new biological metaheuristic technique is determined that is Tunicate swarm Algorithm (TSA). This method is better than many biological metaheuristic techniques. In this paper, the TSA is implemented to the PID controller for the Permanent Magnet Synchronous Motor (PMSM) operation thereby improving the Speed response and comparing with the existing PSO and conventional PID controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用被囊虫群优化改进PMSM性能
人类正朝着无污染的环境发展,电动汽车(EV)可以帮助实现这一目标,因为污染的主要来源之一是传统汽车。提高电动汽车的性能将促进电动汽车在人类文明中的使用。对于任何电机,性能取决于时域参数。通过对时域参数的优化,系统性能得到显著提高。通过简单的优化PID控制器,电机可以实现与模糊逻辑系统等其他控制器相似的性能。在许多论文中,PID是使用粒子群优化(PSO)来调整的。近年来,人们提出了一种新的生物元启发式算法——被囊虫群算法(TSA)。这种方法优于许多生物元启发式技术。本文将TSA应用于永磁同步电机(PMSM)运行的PID控制器,提高了速度响应,并与现有的PSO和传统PID控制器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Response Mechanism in Vehicular Cooperative Caching for C-V2X Networks A Modified Multiband Antenna for 5G Communication Deep Learning-Based Comparative Study to Detect Polyp Removal in Endoscopic Images A Multiple Stage Deep Learning Model for NID in MANETs Automated Diagnosis of Pneumonia through Capsule Network in conjunction with ResNet50v2 model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1