{"title":"2.5 CuAAC and Metal-Free 1,3-Dipolar Huisgen Cycloadditions in Drug Discovery","authors":"K. Kacprzak, I. Skiera, J. Rutkowski","doi":"10.1055/sos-sd-235-00082","DOIUrl":null,"url":null,"abstract":"Proclaimed by Sharpless in 2001, the manifesto of click chemistry philosophy shifted the focus from target-oriented to drug-like-oriented synthesis, and has enormously accelerated the drug-discovery process over the last two decades. Copper(I)-catalyzed and metal-free versions of the Huisgen 1,3-dipolar cycloaddition of azides and alkynes have become the reference click chemistry synthetic tools. These processes are adaptable to various drug-design modes such as kinetic target guided synthesis (in situ click chemistry assembling; KTGS), combinatorial chemistry/high-throughput-screening approaches, or structure-based rational projecting. Moreover, the facile click chemistry derivatization of natural or synthetic products, linking molecules or improving the stability of leads by installation of 1,2,3-triazoles, is another important stream of bioactivities. This review is intended to provide a general overview of click-chemistry-powered drug design, with dozens of successful examples resulting in the discovery of nanomolar-active 1,2,3-triazoles in every stage of drug development.","PeriodicalId":340057,"journal":{"name":"Click Chemistry","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Click Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/sos-sd-235-00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Proclaimed by Sharpless in 2001, the manifesto of click chemistry philosophy shifted the focus from target-oriented to drug-like-oriented synthesis, and has enormously accelerated the drug-discovery process over the last two decades. Copper(I)-catalyzed and metal-free versions of the Huisgen 1,3-dipolar cycloaddition of azides and alkynes have become the reference click chemistry synthetic tools. These processes are adaptable to various drug-design modes such as kinetic target guided synthesis (in situ click chemistry assembling; KTGS), combinatorial chemistry/high-throughput-screening approaches, or structure-based rational projecting. Moreover, the facile click chemistry derivatization of natural or synthetic products, linking molecules or improving the stability of leads by installation of 1,2,3-triazoles, is another important stream of bioactivities. This review is intended to provide a general overview of click-chemistry-powered drug design, with dozens of successful examples resulting in the discovery of nanomolar-active 1,2,3-triazoles in every stage of drug development.