Performance Comparison of the ANFIS based Quad-Copter Controller Algorithms

Namal Rathnayake, Tuan Linh Dang, Y. Hoshino
{"title":"Performance Comparison of the ANFIS based Quad-Copter Controller Algorithms","authors":"Namal Rathnayake, Tuan Linh Dang, Y. Hoshino","doi":"10.1109/FUZZ45933.2021.9494344","DOIUrl":null,"url":null,"abstract":"Performing an accurate and smooth trajectory of a quad-copter is a crucial aspect in autonomous controls due to its non-linearity and under-actuated characteristic. Adaptive Neuro-Fuzzy Inference System (ANFIS) is well-known for nonlinear controls. This paper focuses on comparing the performance of ANFIS based quad-copter systems to identify the best optimization algorithm. Two famous algorithms called Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) was used as the optimization algorithms and to tune the gains of the Fuzzy Inference Systems (FIS). The analysis was performed using two different simulations namely, altitude control and trajectory navigation. The final results were compared between traditional PID, conventional ANFIS, GA-ANFIS and PSO-ANFIS. PSO-ANFIS obtained the highest performance in our experiments.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Performing an accurate and smooth trajectory of a quad-copter is a crucial aspect in autonomous controls due to its non-linearity and under-actuated characteristic. Adaptive Neuro-Fuzzy Inference System (ANFIS) is well-known for nonlinear controls. This paper focuses on comparing the performance of ANFIS based quad-copter systems to identify the best optimization algorithm. Two famous algorithms called Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) was used as the optimization algorithms and to tune the gains of the Fuzzy Inference Systems (FIS). The analysis was performed using two different simulations namely, altitude control and trajectory navigation. The final results were compared between traditional PID, conventional ANFIS, GA-ANFIS and PSO-ANFIS. PSO-ANFIS obtained the highest performance in our experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ANFIS的四旋翼控制器算法性能比较
由于四旋翼飞行器的非线性和欠驱动特性,实现其精确、平滑的飞行轨迹是自主控制的一个重要方面。自适应神经模糊推理系统(ANFIS)以非线性控制著称。本文重点比较了基于ANFIS的四旋翼飞行器系统的性能,以确定最佳优化算法。采用遗传算法(GA)和粒子群算法(PSO)作为优化算法,对模糊推理系统(FIS)的增益进行调整。通过高度控制和弹道导航两种不同的仿真进行了分析。比较了传统PID、传统ANFIS、GA-ANFIS和PSO-ANFIS的最终结果。在我们的实验中,PSO-ANFIS获得了最高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI Models for Quality of Experience Prediction in Wireless Networks Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data Necessary and sufficient condition for the existence of Atanassov's Intuitionistic Fuzzy based additive definite integral Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1