Speaker verification in noisy environment using GMM supervectors

Sourjya Sarkar, K. S. Rao
{"title":"Speaker verification in noisy environment using GMM supervectors","authors":"Sourjya Sarkar, K. S. Rao","doi":"10.1109/NCC.2013.6487995","DOIUrl":null,"url":null,"abstract":"This paper explores the GMM-SVM combined approach for Text-Independent speaker verification in noisy environment. In recent years supervectors constructed by stacking the means of adapted Gaussian Mixture Models (GMMs) have been used successfully for deriving sequence kernels. Support Vector Machines (SVMs) trained using such kernels provide further improvement in classification accuracy. Analysis of the behavior of such hybrid systems towards simulated noisy data is the object of our study. In our work we have used the KL-divergence and GMM-UBM mean interval kernels for SVM training. All experiments are conducted on NIST-SRE-2003 database with training and test utterances degraded by noises (car, factory & pink) collected from the NOISEX-92 database, at 5dB & 10dB SNRs. A significant improvement of performance is observed in comparison to the traditional GMM-UBM based system.","PeriodicalId":202526,"journal":{"name":"2013 National Conference on Communications (NCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2013.6487995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper explores the GMM-SVM combined approach for Text-Independent speaker verification in noisy environment. In recent years supervectors constructed by stacking the means of adapted Gaussian Mixture Models (GMMs) have been used successfully for deriving sequence kernels. Support Vector Machines (SVMs) trained using such kernels provide further improvement in classification accuracy. Analysis of the behavior of such hybrid systems towards simulated noisy data is the object of our study. In our work we have used the KL-divergence and GMM-UBM mean interval kernels for SVM training. All experiments are conducted on NIST-SRE-2003 database with training and test utterances degraded by noises (car, factory & pink) collected from the NOISEX-92 database, at 5dB & 10dB SNRs. A significant improvement of performance is observed in comparison to the traditional GMM-UBM based system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GMM超向量的噪声环境下说话人验证
本文探讨了基于GMM-SVM的噪声环境下文本无关说话人验证方法。近年来,由自适应高斯混合模型(GMMs)的均值叠加构造的超向量已成功地用于序列核的推导。使用这些核训练的支持向量机(svm)进一步提高了分类精度。分析这种混合系统对模拟噪声数据的行为是我们研究的对象。在我们的工作中,我们使用了kl -散度和GMM-UBM平均区间核来训练支持向量机。所有实验均在NIST-SRE-2003数据库上进行,训练和测试语音被噪声(汽车噪声、工厂噪声和粉红色噪声)退化,这些噪声来自NOISEX-92数据库,信噪比分别为5dB和10dB。与传统的基于GMM-UBM的系统相比,性能有了显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of fractal DGS microwave filters Bridging the digital gap in rural India VIVEKDISHA: A novel experience A novel optical control plane for switching a limited range wavelength converter based electro-optical hybrid node in translucent WDM optical networks Performance analysis of BitTorrent protocol Design, analysis and simulation of hybrid integrated NRD guide based QPSK modulator for LMDS applications at 28GHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1