Real-Time Independent Vector Analysis with a Deep-Learning-Based Source Model

Fang Kang, Feiran Yang, Jun Yang
{"title":"Real-Time Independent Vector Analysis with a Deep-Learning-Based Source Model","authors":"Fang Kang, Feiran Yang, Jun Yang","doi":"10.1109/SLT48900.2021.9383599","DOIUrl":null,"url":null,"abstract":"In this paper, we present a real-time blind source separation (BSS) algorithm, which unifies the independent vector analysis (IVA) as a spatial model and a deep neural network (DNN) as a source model. The auxiliary-function based IVA (Aux-IVA) is utilized to update the demixing matrix, and the required time-varying variance of the speech source is estimated by a DNN. The DNN could provide a more accurate source model, which then helps to optimize the spatial model. In addition, because the DNN is used to estimate the source variance instead of the source power spectrogram, the size of DNN can be reduced significantly. Experiment results show that the joint utilization of the model-based approach and the data-driven approach provides a more efficient solution than just alone in terms of convergence rate and source separation performance.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we present a real-time blind source separation (BSS) algorithm, which unifies the independent vector analysis (IVA) as a spatial model and a deep neural network (DNN) as a source model. The auxiliary-function based IVA (Aux-IVA) is utilized to update the demixing matrix, and the required time-varying variance of the speech source is estimated by a DNN. The DNN could provide a more accurate source model, which then helps to optimize the spatial model. In addition, because the DNN is used to estimate the source variance instead of the source power spectrogram, the size of DNN can be reduced significantly. Experiment results show that the joint utilization of the model-based approach and the data-driven approach provides a more efficient solution than just alone in terms of convergence rate and source separation performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习源模型的实时独立矢量分析
本文提出了一种将独立向量分析(IVA)作为空间模型和深度神经网络(DNN)作为源模型相结合的实时盲源分离(BSS)算法。利用基于辅助函数的IVA (Aux-IVA)来更新解混矩阵,并通过深度神经网络估计语音源所需的时变方差。深度神经网络可以提供更精确的源模型,从而有助于优化空间模型。此外,由于深度神经网络用于估计源方差而不是源功率谱,因此可以显著减小深度神经网络的大小。实验结果表明,基于模型的方法和数据驱动的方法联合使用在收敛速度和源分离性能方面比单独使用更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Through the Words of Viewers: Using Comment-Content Entangled Network for Humor Impression Recognition Analysis of Multimodal Features for Speaking Proficiency Scoring in an Interview Dialogue Convolution-Based Attention Model With Positional Encoding For Streaming Speech Recognition On Embedded Devices Two-Stage Augmentation and Adaptive CTC Fusion for Improved Robustness of Multi-Stream end-to-end ASR Speaker-Independent Visual Speech Recognition with the Inception V3 Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1