Mining periodic patterns in manufacturing test data

J. Engler
{"title":"Mining periodic patterns in manufacturing test data","authors":"J. Engler","doi":"10.1109/SECON.2008.4494325","DOIUrl":null,"url":null,"abstract":"Mining of periodic patterns in time series databases is an important data mining problem with many applications. Previous articles have considered the mining of periodic patterns in datasets that range from standard market basket datasets to datasets containing information about the movement activities of cellular phone users. Each of these studies offer solutions to the given domain but lack the ability to address the domain of manufacturing test data. This paper proposes a general model for discovery of periodic patterns within datasets related to the manufacturing of electronic goods. Three general phases are considered. The discretization of the original dataset is first to be discussed, followed by the clustering of the dataset into state related clusters and finally the discovery of periodic patterns in the state transitions of the tests.","PeriodicalId":188817,"journal":{"name":"IEEE SoutheastCon 2008","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE SoutheastCon 2008","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2008.4494325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mining of periodic patterns in time series databases is an important data mining problem with many applications. Previous articles have considered the mining of periodic patterns in datasets that range from standard market basket datasets to datasets containing information about the movement activities of cellular phone users. Each of these studies offer solutions to the given domain but lack the ability to address the domain of manufacturing test data. This paper proposes a general model for discovery of periodic patterns within datasets related to the manufacturing of electronic goods. Three general phases are considered. The discretization of the original dataset is first to be discussed, followed by the clustering of the dataset into state related clusters and finally the discovery of periodic patterns in the state transitions of the tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制造测试数据的周期模式挖掘
时间序列数据库中周期模式的挖掘是许多应用中重要的数据挖掘问题。以前的文章已经考虑了从标准购物篮数据集到包含手机用户移动活动信息的数据集的数据集中周期性模式的挖掘。这些研究都提供了给定领域的解决方案,但缺乏解决制造测试数据领域的能力。本文提出了一个通用模型,用于发现与电子产品制造相关的数据集中的周期性模式。一般考虑三个阶段。首先讨论原始数据集的离散化,然后将数据集聚类到与状态相关的聚类中,最后发现测试状态转换中的周期性模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Web-based interactive Student Advising system using Java frameworks Development of a nanoscale directionally sensitive optical radiation sensor for guidance and control of nanorobotic space exploration systems -the VCELL SVM for automatic rodent sleep-wake classification Low-frequency amplifiers for PVDF film sensors Dynamics and simulation of a space robot in a gravitational field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1