{"title":"Roadrunner+: An Autonomous Intersection Management Cooperating with Connected Autonomous Vehicles and Pedestrians with Spillback Considered","authors":"Michael I.-C. Wang, Charles H.-P. Wen, H. J. Chao","doi":"10.1145/3488246","DOIUrl":null,"url":null,"abstract":"\n The recent emergence of Connected Autonomous Vehicles (CAVs) enables the Autonomous Intersection Management (AIM) system, replacing traffic signals and human driving operations for improved safety and road efficiency. When CAVs approach an intersection, AIM schedules their intersection usage in a collision-free manner while minimizing their waiting times. In practice, however, there are pedestrian road-crossing requests and spillback problems, a blockage caused by the congestion of the downstream intersection when the traffic load exceeds the road capacity. As a result, collisions occur when CAVs ignore pedestrians or are forced to the congested road. In this article, we present a cooperative AIM system, named\n Roadrunner+\n , which simultaneously considers CAVs, pedestrians, and upstream/downstream intersections for spillback handling, collision avoidance, and efficient CAV controls. The performance of Roadrunner+ is evaluated with the SUMO microscopic simulator. Our experimental results show that Roadrunner+ has 15.16% higher throughput than other AIM systems and 102.53% higher throughput than traditional traffic signals. Roadrunner+ also reduces 75.62% traveling delay compared to other AIM systems. Moreover, the results show that CAVs in Roadrunner+ save up to 7.64% in fuel consumption, and all the collisions caused by spillback are prevented in Roadrunner+.\n","PeriodicalId":120188,"journal":{"name":"ACM Trans. Cyber Phys. Syst.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Cyber Phys. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3488246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The recent emergence of Connected Autonomous Vehicles (CAVs) enables the Autonomous Intersection Management (AIM) system, replacing traffic signals and human driving operations for improved safety and road efficiency. When CAVs approach an intersection, AIM schedules their intersection usage in a collision-free manner while minimizing their waiting times. In practice, however, there are pedestrian road-crossing requests and spillback problems, a blockage caused by the congestion of the downstream intersection when the traffic load exceeds the road capacity. As a result, collisions occur when CAVs ignore pedestrians or are forced to the congested road. In this article, we present a cooperative AIM system, named
Roadrunner+
, which simultaneously considers CAVs, pedestrians, and upstream/downstream intersections for spillback handling, collision avoidance, and efficient CAV controls. The performance of Roadrunner+ is evaluated with the SUMO microscopic simulator. Our experimental results show that Roadrunner+ has 15.16% higher throughput than other AIM systems and 102.53% higher throughput than traditional traffic signals. Roadrunner+ also reduces 75.62% traveling delay compared to other AIM systems. Moreover, the results show that CAVs in Roadrunner+ save up to 7.64% in fuel consumption, and all the collisions caused by spillback are prevented in Roadrunner+.