27.6 Background Capacitor-Current-Sensor Calibration of DC-DC Buck Converter with DVS for Accurately Accelerating Load-Transient Response

T. Kuo, Yi-Wei Huang, Pai-Yi Wang
{"title":"27.6 Background Capacitor-Current-Sensor Calibration of DC-DC Buck Converter with DVS for Accurately Accelerating Load-Transient Response","authors":"T. Kuo, Yi-Wei Huang, Pai-Yi Wang","doi":"10.1109/ISSCC.2019.8662296","DOIUrl":null,"url":null,"abstract":"Switching buck converters with dynamic voltage scaling (DVS) for high-efficiency high-performance computing applications need to reduce the output-voltage undershoot/overshoot ($V_{\\mathrm {US}}$/$V_{\\mathrm {OS}}$) and settling time $t_{\\mathrm {S}}$ under a large and fast-changing load current ($I_{\\mathrm {load}}$). A multiphase topology with a fast load-transient response meets these requirements. The load-transient response can be accurately accelerated to reduce $V_{\\mathrm {US}}$/$V_{\\mathrm {OS}}$ and $t_{\\mathrm {S}}$ to near their ideal values by measuring the output-capacitor current $I_{\\mathrm {C}\\mathrm {o}}$ to control the inductor’s energizing and de-energizing times, since $I_{\\mathrm {C}\\mathrm {o}}$ instantly reflects the load-current transients. An integrated capacitor-current sensor (CCS) [1] can be used to sense $I_{\\mathrm {C}\\mathrm {o}}$ by emulating the output-capacitor impedance $Z_{\\mathrm {C}\\mathrm {o}}$: comprising capacitance $C_{\\mathrm{O}}$, the equivalent series resistance $R_{\\mathrm {E}\\mathrm {S}\\mathrm {R}}$, and inductance $L_{\\mathrm {E}\\mathrm {S}\\mathrm {L}}$. However, $I_{\\mathrm {C}\\mathrm {o}}$ will be inaccurately sensed if $Z_{\\mathrm {C}\\mathrm {o}}$ varies with different output voltages $V_{\\mathrm{O}}$, manufacturing variations, PCB parasitics, temperature, and aging. The state-of-the-art CCS calibration technique [1] for such $Z_{\\mathrm {C}\\mathrm {o}}$ variations is suitable for foreground operation and DVS with pre-characterized $V_{\\mathrm{O}}$ levels, since calibration starts immediately after being enabled and runs continuously until it ends. The CCS in [1] is calibrated with a low-power cost-effective comparator and successive approximation logic, with an acceptable calibration time $T_{\\mathrm{CAL}}$ for foreground operation. To broaden the range of applications, this work proposes an ADC-based CCS and a background CCS calibration (BCC) controller. The proposed CCS uses a flash ADC with a dynamic reference to shorten $T_{\\mathrm {C}\\mathrm {A}\\mathrm {L}}$. The BCC controller automatically finds a quasi-steady state (OS), namely a short period of steady-state behavior when there is no load transient or DVS event, to trigger CCS calibration, and can interrupt CCS calibration when a load transient or a DVS event occurs. Since OSs generally exist, the BCC with a short $T_{\\mathrm{CAL}}$ can increase the flexibility of scheduling both load transients and DVS events. Thus, it is suitable for DVS with numerous $V_{\\mathrm{O}}$ levels that account for in situ parameter variations.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Switching buck converters with dynamic voltage scaling (DVS) for high-efficiency high-performance computing applications need to reduce the output-voltage undershoot/overshoot ($V_{\mathrm {US}}$/$V_{\mathrm {OS}}$) and settling time $t_{\mathrm {S}}$ under a large and fast-changing load current ($I_{\mathrm {load}}$). A multiphase topology with a fast load-transient response meets these requirements. The load-transient response can be accurately accelerated to reduce $V_{\mathrm {US}}$/$V_{\mathrm {OS}}$ and $t_{\mathrm {S}}$ to near their ideal values by measuring the output-capacitor current $I_{\mathrm {C}\mathrm {o}}$ to control the inductor’s energizing and de-energizing times, since $I_{\mathrm {C}\mathrm {o}}$ instantly reflects the load-current transients. An integrated capacitor-current sensor (CCS) [1] can be used to sense $I_{\mathrm {C}\mathrm {o}}$ by emulating the output-capacitor impedance $Z_{\mathrm {C}\mathrm {o}}$: comprising capacitance $C_{\mathrm{O}}$, the equivalent series resistance $R_{\mathrm {E}\mathrm {S}\mathrm {R}}$, and inductance $L_{\mathrm {E}\mathrm {S}\mathrm {L}}$. However, $I_{\mathrm {C}\mathrm {o}}$ will be inaccurately sensed if $Z_{\mathrm {C}\mathrm {o}}$ varies with different output voltages $V_{\mathrm{O}}$, manufacturing variations, PCB parasitics, temperature, and aging. The state-of-the-art CCS calibration technique [1] for such $Z_{\mathrm {C}\mathrm {o}}$ variations is suitable for foreground operation and DVS with pre-characterized $V_{\mathrm{O}}$ levels, since calibration starts immediately after being enabled and runs continuously until it ends. The CCS in [1] is calibrated with a low-power cost-effective comparator and successive approximation logic, with an acceptable calibration time $T_{\mathrm{CAL}}$ for foreground operation. To broaden the range of applications, this work proposes an ADC-based CCS and a background CCS calibration (BCC) controller. The proposed CCS uses a flash ADC with a dynamic reference to shorten $T_{\mathrm {C}\mathrm {A}\mathrm {L}}$. The BCC controller automatically finds a quasi-steady state (OS), namely a short period of steady-state behavior when there is no load transient or DVS event, to trigger CCS calibration, and can interrupt CCS calibration when a load transient or a DVS event occurs. Since OSs generally exist, the BCC with a short $T_{\mathrm{CAL}}$ can increase the flexibility of scheduling both load transients and DVS events. Thus, it is suitable for DVS with numerous $V_{\mathrm{O}}$ levels that account for in situ parameter variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
27.6带DVS的DC-DC降压变换器的背景电容-电流传感器校准,以准确加速负载暂态响应
用于高效高性能计算应用的动态电压缩放(DVS)开关降压转换器需要减少输出电压过调/过调($V_{\ mathm {US}}$/$V_{\ mathm {OS}}$)和在大且快速变化的负载电流($I_{\ mathm {load}}$)下的稳定时间$t_{\ mathm {S}}$。具有快速负载瞬态响应的多相拓扑结构满足这些要求。通过测量输出电容电流$I_{\mathrm {C}\mathrm {o}}$来控制电感器的通电和断电次数,可以精确地加速负载瞬态响应,使$V_{\mathrm {US}}$/$V_{\mathrm {OS}}$和$t_{\mathrm {S}}$接近理想值,因为$I_{\mathrm {C}\mathrm {o}}$能瞬间反映负载电流瞬态。集成电容电流传感器(CCS)[1]可以通过模拟输出电容阻抗$Z_{\ mathm {C}\ mathm {o}}$来感应$I_{\ mathm {C}\ mathm {o}}$,包括电容$C_{\ mathm {E}\ mathm {S}\ mathm {R} $和电感$L_{\ mathm {E}\ mathm {S}\ mathm {L}}$。然而,如果$Z_{\ mathm {C}\ mathm {o}}$随输出电压$V_{\ mathm {o}}$、制造变化、PCB寄生、温度和老化而变化,则$I_{\ mathm {C}\ mathm {o}}$会被不准确地检测到。对于这种$Z_{\mathrm {C}\mathrm {o}}$变化,最先进的CCS校准技术[1]适用于前景操作和具有预表征的$V_{\mathrm{o}}$水平的分布式交换机,因为校准在启用后立即开始并持续运行直到结束。[1]中的CCS使用低功耗、低成本的比较器和逐次逼近逻辑进行校准,具有可接受的校准时间$T_{\ mathm {CAL}}$用于前景操作。为了扩大应用范围,本工作提出了一个基于adc的CCS和一个背景CCS校准(BCC)控制器。提出的CCS使用带有动态引用的flash ADC来缩短$T_{\ mathm {C}\ mathm {a}\ mathm {L}}$。BCC控制器自动找到一个准稳态(OS),即在没有负载瞬态或DVS事件时的短时间稳态行为,触发CCS校准,并在负载瞬态或DVS事件发生时中断CCS校准。由于os普遍存在,使用短$T_{\ mathm {CAL}}$的BCC可以增加调度负载瞬态和分布式交换机事件的灵活性。因此,它适用于具有大量考虑原位参数变化的$V_{\ mathm {O}}$级别的分布式交换机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
27.2 An Adiabatic Sense and Set Rectifier for Improved Maximum-Power-Point Tracking in Piezoelectric Harvesting with 541% Energy Extraction Gain 22.7 A Programmable Wireless EEG Monitoring SoC with Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy Control 2.5 A 40×40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control 11.2 A CMOS Biosensor Array with 1024 3-Electrode Voltammetry Pixels and 93dB Dynamic Range 11.3 A Capacitive Biosensor for Cancer Diagnosis Using a Functionalized Microneedle and a 13.7b-Resolution Capacitance-to-Digital Converter from 1 to 100nF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1