DC brush-less servo motor drive systems using automatic learning control-based auto gain parameter tuning scheme

K. Inoue, J. Yoshitsugu, S. Shirogane, P. Boyagoda, M. Nakaoka
{"title":"DC brush-less servo motor drive systems using automatic learning control-based auto gain parameter tuning scheme","authors":"K. Inoue, J. Yoshitsugu, S. Shirogane, P. Boyagoda, M. Nakaoka","doi":"10.1109/IECON.1997.668414","DOIUrl":null,"url":null,"abstract":"In this paper, the authors describe an advanced control method of system parameter auto-tuning implementation for a DC brushless motor drive system using fuzzy reasoning logic with an automatic learning control function. This method includes three features: (i) it is not necessary to input some kind of fuzzy rule to the servo system before starting autotuning operation; thus fuzzy rules can be automatically produced in learning a logical process; (ii) no knowledge or information of system parameter tuning techniques are required; and (iii) both high speed response and robustness can be obtained. The feasible effectiveness of this auto-tuning processing approach for DC brushless servomotor drives are practically confirmed through experimental results.","PeriodicalId":404447,"journal":{"name":"Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1997.668414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, the authors describe an advanced control method of system parameter auto-tuning implementation for a DC brushless motor drive system using fuzzy reasoning logic with an automatic learning control function. This method includes three features: (i) it is not necessary to input some kind of fuzzy rule to the servo system before starting autotuning operation; thus fuzzy rules can be automatically produced in learning a logical process; (ii) no knowledge or information of system parameter tuning techniques are required; and (iii) both high speed response and robustness can be obtained. The feasible effectiveness of this auto-tuning processing approach for DC brushless servomotor drives are practically confirmed through experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直流无刷伺服电机驱动系统采用基于自动学习控制的自动增益参数整定方案
本文介绍了一种利用模糊推理逻辑实现具有自动学习控制功能的直流无刷电机驱动系统参数自整定的先进控制方法。该方法具有三个特点:(1)不需要在伺服系统开始自整定操作前输入某种模糊规则;因此,模糊规则可以在学习逻辑过程中自动产生;(ii)不需要系统参数调优技术的知识或资料;(3)既能获得高速响应,又能获得鲁棒性。实验结果验证了该自整定处理方法在直流无刷伺服电机驱动中的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational intelligence in robotics and mechatronics Analysis and classical control design of servo system using high order disturbance observer A new set of topologies for multiple-output converters with zero switching losses Auto-tuning control of self-commissioning electric drives Control philosophies of PWM inverter-fed induction motors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1