Toward Improving the Security of IoT and CPS Devices: An AI Approach

Abdurhman Albasir, Kshirasagar Naik, Ricardo Manzano
{"title":"Toward Improving the Security of IoT and CPS Devices: An AI Approach","authors":"Abdurhman Albasir, Kshirasagar Naik, Ricardo Manzano","doi":"10.1145/3497862","DOIUrl":null,"url":null,"abstract":"Detecting anomalously behaving devices in security-and-safety-critical applications is an important challenge. This article presents an off-device methodology for detecting the anomalous behavior of devices considering their power consumption data. The methodology takes advantage of the fact that every action on-board a device will be reflected in its power trace. This argument makes it inevitable for anomalously behaving device to go undetected. We transform the device’s one-dimensional (1D) instantaneous power consumption signals to 2D time–frequency images using Constant Q Transformation (CQT). The CQT images capture valuable information about the tasks performed on-board a device. By applying Histograms of Oriented Gradients (HOG) on the CQT images, we extract robust features that preserve the edges of time–frequency structures and capture the directionality of the edge information. Consequently, we transform the anomaly detection problem into an image classification problem. We train a Convolutional Neural Network on the HOG images to classify the power signals to detect anomaly. We validated the methodology using a wide spectrum of emulated malware scenarios, five real malware applications from the well-known Drebin dataset, Distributed Denial of Service attacks, cryptomining malware, and faulty CPU cores. Across 18 datasets, our methodology demonstrated detection performance of ∼88% accuracy and 85% F-Score, resulting in improvements of 9–17% over other methods using power signals.","PeriodicalId":202552,"journal":{"name":"Digital Threats: Research and Practice","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Threats: Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3497862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Detecting anomalously behaving devices in security-and-safety-critical applications is an important challenge. This article presents an off-device methodology for detecting the anomalous behavior of devices considering their power consumption data. The methodology takes advantage of the fact that every action on-board a device will be reflected in its power trace. This argument makes it inevitable for anomalously behaving device to go undetected. We transform the device’s one-dimensional (1D) instantaneous power consumption signals to 2D time–frequency images using Constant Q Transformation (CQT). The CQT images capture valuable information about the tasks performed on-board a device. By applying Histograms of Oriented Gradients (HOG) on the CQT images, we extract robust features that preserve the edges of time–frequency structures and capture the directionality of the edge information. Consequently, we transform the anomaly detection problem into an image classification problem. We train a Convolutional Neural Network on the HOG images to classify the power signals to detect anomaly. We validated the methodology using a wide spectrum of emulated malware scenarios, five real malware applications from the well-known Drebin dataset, Distributed Denial of Service attacks, cryptomining malware, and faulty CPU cores. Across 18 datasets, our methodology demonstrated detection performance of ∼88% accuracy and 85% F-Score, resulting in improvements of 9–17% over other methods using power signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高物联网和CPS设备的安全性:一种人工智能方法
在安全和安全关键应用中检测异常行为设备是一个重要的挑战。本文提出了一种设备外方法,用于检测考虑其功耗数据的设备的异常行为。该方法利用了这样一个事实,即设备上的每个动作都将反映在其功率轨迹中。这个论点使得异常行为的设备不可避免地不被发现。我们使用恒Q变换(CQT)将器件的一维(1D)瞬时功耗信号转换为二维时频图像。CQT图像捕获有关设备上执行的任务的有价值的信息。通过在CQT图像上应用定向梯度直方图(HOG),我们提取了保留时频结构边缘的鲁棒特征,并捕获了边缘信息的方向性。因此,我们将异常检测问题转化为图像分类问题。我们在HOG图像上训练卷积神经网络对功率信号进行分类以检测异常。我们使用广泛的模拟恶意软件场景,来自著名的Drebin数据集的五个真实恶意软件应用程序,分布式拒绝服务攻击,加密恶意软件和故障CPU内核验证了该方法。在18个数据集中,我们的方法证明了检测精度为~ 88%和F-Score为85%的性能,比使用功率信号的其他方法提高了9-17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal Inconsistencies are Normal in Windows Memory Dumps (too) InvesTEE: A TEE-supported Framework for Lawful Remote Forensic Investigations Does Cyber Insurance promote Cyber Security Best Practice? An Analysis based on Insurance Application Forms Unveiling Cyber Threat Actors: A Hybrid Deep Learning Approach for Behavior-based Attribution A Framework for Enhancing Social Media Misinformation Detection with Topical-Tactics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1