H. Mehta, P. Harvey, O. Rana, R. Buyya, B. Varghese
{"title":"WattsApp: Power-Aware Container Scheduling","authors":"H. Mehta, P. Harvey, O. Rana, R. Buyya, B. Varghese","doi":"10.1109/UCC48980.2020.00027","DOIUrl":null,"url":null,"abstract":"Containers are popular for deploying workloads. However, there are limited software-based methods (hardware- based methods are expensive) for obtaining the power consumed by containers to facilitate power-aware container scheduling. This paper presents WattsApp, a tool underpinned by a six step software-based method for power-aware container scheduling to minimize power cap violations on a server. The proposed method relies on a neural network-based power estimation model and a power capped container scheduling technique. Experimental studies are pursued in a lab-based environment on 10 benchmarks on Intel and ARM processors. The results highlight that power estimation has negligible overheads - nearly 90% of all data samples can be estimated with less than a 10% error, and the Mean Absolute Percentage Error (MAPE) is less than 6%. The power-aware scheduling of WattsApp is more effective than Intel’s Running Power Average Limit (RAPL) based power capping as it does not degrade the performance of all running containers.","PeriodicalId":125849,"journal":{"name":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC48980.2020.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Containers are popular for deploying workloads. However, there are limited software-based methods (hardware- based methods are expensive) for obtaining the power consumed by containers to facilitate power-aware container scheduling. This paper presents WattsApp, a tool underpinned by a six step software-based method for power-aware container scheduling to minimize power cap violations on a server. The proposed method relies on a neural network-based power estimation model and a power capped container scheduling technique. Experimental studies are pursued in a lab-based environment on 10 benchmarks on Intel and ARM processors. The results highlight that power estimation has negligible overheads - nearly 90% of all data samples can be estimated with less than a 10% error, and the Mean Absolute Percentage Error (MAPE) is less than 6%. The power-aware scheduling of WattsApp is more effective than Intel’s Running Power Average Limit (RAPL) based power capping as it does not degrade the performance of all running containers.