Stochastic Graph Filtering Under Asymmetric Links in Wireless Sensor Networks

Leila Ben Saad, B. Beferull-Lozano
{"title":"Stochastic Graph Filtering Under Asymmetric Links in Wireless Sensor Networks","authors":"Leila Ben Saad, B. Beferull-Lozano","doi":"10.1109/SPAWC.2018.8445848","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSN s) are often characterized by random and asymmetric packet losses due to the wireless medium, leading to network topologies that can be modeled as random, time-varying and directed graphs. Most of existing works related to graph filtering in the context of WSNs assume that the probability of delivering an information from one node to a neighbor node is the same as in the reverse direction. This assumption is not realistic due to the typical link asymmetry in WSNs caused by interferences and background noise. In this work, we analyze the problem of applying stochastic graph filtering over random time-varying asymmetric network topologies. We show that it is possible to perform stochastic graph filtering under asymmetric links with node-variant graph filters, while optimizing a trade-off between the expected error (bias) and the variance of the error, with respect to performing graph filtering over a fixed static topology given by a certain connectivity radius of the nodes.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Wireless sensor networks (WSN s) are often characterized by random and asymmetric packet losses due to the wireless medium, leading to network topologies that can be modeled as random, time-varying and directed graphs. Most of existing works related to graph filtering in the context of WSNs assume that the probability of delivering an information from one node to a neighbor node is the same as in the reverse direction. This assumption is not realistic due to the typical link asymmetry in WSNs caused by interferences and background noise. In this work, we analyze the problem of applying stochastic graph filtering over random time-varying asymmetric network topologies. We show that it is possible to perform stochastic graph filtering under asymmetric links with node-variant graph filters, while optimizing a trade-off between the expected error (bias) and the variance of the error, with respect to performing graph filtering over a fixed static topology given by a certain connectivity radius of the nodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线传感器网络非对称链路下的随机图滤波
无线传感器网络(WSN)的特点是由于无线介质导致的随机和非对称丢包,导致网络拓扑可以建模为随机、时变和有向图。现有的大多数与wsn背景下的图过滤相关的工作都假设从一个节点向相邻节点传递信息的概率与反向传递信息的概率相同。由于干扰和背景噪声导致的无线传感器网络中典型的链路不对称,这种假设是不现实的。在这项工作中,我们分析了在随机时变非对称网络拓扑上应用随机图滤波的问题。我们证明了在非对称链路下使用节点变量图过滤器执行随机图过滤是可能的,同时优化预期误差(偏差)和误差方差之间的权衡,相对于在由节点的特定连接半径给定的固定静态拓扑上执行图过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Successive Cancellation Decoding of Polar Codes Analysis of Some Well-Rounded Lattices in Wiretap Channels Two-Way Full-Duplex MIMO with Hybrid TX-RX MSE Minimization and Interference Cancellation Minimum Energy Resource Allocation in FOG Radio Access Network with Fronthaul and Latency Constraints A Distance and Bandwidth Dependent Adaptive Modulation Scheme for THz Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1