{"title":"A Steel Surface Defect Detection Model Based on Graph Neural Networks","authors":"Wenkai Pang, Zhi Tan","doi":"10.1088/1361-6501/ad1c4b","DOIUrl":null,"url":null,"abstract":"\n Steel is an indispensable raw material in the construction industry. To avert catastrophic events such as building collapse, it is essential to detect minute defects on steel surfaces during production. However, this has been a persistent challenge due to the minuscule and dense nature of these defects. To this end, we propose an efficient defect detector called Vision Grapher with Hadamard (ViGh) , which employs a novel attention mecha-nism (HDmA) to establish local-to-local relationships within an image and integrates global relationships by graph convolution. With the HDmA module, we can not only fuse information under the same field of view, but also under different fields of view, which significantly enhances the richness of the acquired features. In addition, com-pared to convolutional neural networks, graph neural networks can utilize the contextual information in the image more effectively and resulting in better performance. We eval-uate our model on the NEU-DET and GC-10 benchmark datasets, which encompass six and ten types of defects on the surfaces of hot-rolled and cold-rolled steel, and our mod-el achieves a mean Average Precision (mAP) of 79.04% and 66.93% on the two datasets, respectively. The results demonstrate that our model significantly improves the accuracy of defect detection compared to existing methods.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"50 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1c4b","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Steel is an indispensable raw material in the construction industry. To avert catastrophic events such as building collapse, it is essential to detect minute defects on steel surfaces during production. However, this has been a persistent challenge due to the minuscule and dense nature of these defects. To this end, we propose an efficient defect detector called Vision Grapher with Hadamard (ViGh) , which employs a novel attention mecha-nism (HDmA) to establish local-to-local relationships within an image and integrates global relationships by graph convolution. With the HDmA module, we can not only fuse information under the same field of view, but also under different fields of view, which significantly enhances the richness of the acquired features. In addition, com-pared to convolutional neural networks, graph neural networks can utilize the contextual information in the image more effectively and resulting in better performance. We eval-uate our model on the NEU-DET and GC-10 benchmark datasets, which encompass six and ten types of defects on the surfaces of hot-rolled and cold-rolled steel, and our mod-el achieves a mean Average Precision (mAP) of 79.04% and 66.93% on the two datasets, respectively. The results demonstrate that our model significantly improves the accuracy of defect detection compared to existing methods.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.