Fabien Simon , Coralie Elmaleh , Jean Decker , Marc Fourmentin , Arnaud Cuisset , Guillaume Ducournau , Jean-François Lampin , Gaël Mouret , Francis Hindle
{"title":"Cavity assisted high-resolution THz spectrometer","authors":"Fabien Simon , Coralie Elmaleh , Jean Decker , Marc Fourmentin , Arnaud Cuisset , Guillaume Ducournau , Jean-François Lampin , Gaël Mouret , Francis Hindle","doi":"10.1016/j.photonics.2024.101227","DOIUrl":null,"url":null,"abstract":"<div><p>The analysis of gases by THz radiation offers a high degree of discrimination due to the narrow linewidths that are observed at low pressure. The sensitivity of existing high-resolution instruments is limited by the availability and performance of critical system components. This study uses two key components with physical structures at the wavelength scale to realise a high finesse THz cavity. The cavity is characterised and incorporated into a spectrometer. Sensitivity limits of the instrument are experimentally demonstrated for trace and pure gases. Both CEAS (Cavity Enhanced Absorption Spectroscopy) and CRDS (Cavity Ring-Down Spectroscopy) configurations are shown to give sub-ppm detection levels. The cavity has also been used to measure the atmospheric losses.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101227"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441024000026/pdfft?md5=ddb5546a2b76eb0306763b2a33341d5d&pid=1-s2.0-S1569441024000026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000026","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of gases by THz radiation offers a high degree of discrimination due to the narrow linewidths that are observed at low pressure. The sensitivity of existing high-resolution instruments is limited by the availability and performance of critical system components. This study uses two key components with physical structures at the wavelength scale to realise a high finesse THz cavity. The cavity is characterised and incorporated into a spectrometer. Sensitivity limits of the instrument are experimentally demonstrated for trace and pure gases. Both CEAS (Cavity Enhanced Absorption Spectroscopy) and CRDS (Cavity Ring-Down Spectroscopy) configurations are shown to give sub-ppm detection levels. The cavity has also been used to measure the atmospheric losses.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.