Suppressed distribution of protein A on the surface of Staphylococcus aureus as a morphological characteristic of erythromycin-resistant strain

IF 1.2 4区 医学 Q3 PATHOLOGY Medical Molecular Morphology Pub Date : 2024-02-22 DOI:10.1007/s00795-023-00379-4
{"title":"Suppressed distribution of protein A on the surface of Staphylococcus aureus as a morphological characteristic of erythromycin-resistant strain","authors":"","doi":"10.1007/s00795-023-00379-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>To identify a new morphological phenotype of erythromycin (EM)-resistant <em>Staphylococcus aureus</em> (<em>S. aureus</em>) were isolated in vitro from EM-sensitive parent strain, and the distribution of staphylococcus specific protein A (SpA) on the surface of these strains was examined morphologically by using applied immunoelectron microscopy. The isolated EM-resistant strains had thickened cell walls, and the distribution of SpA on the surfaces of these strains was demonstrated to be lower than that of the parent strain. The SpA suppression was confirmed by enzyme-linked immunosorbent assay (ELISA) using fixed EM-resistant cells. Moreover, the <em>spa</em> gene of EM-resistant cells was detected by polymerase chain reaction (PCR) and confirmed by quantitative real-time PCR assay, showing that the expression of SpA was repressed at the transcriptional level in these strains. Furthermore, ELISA assay showed that whole EM-resistant cell SpA content was significantly decreased. Therefore, it was considered that the suppression of surface SpA on the EM-resistant strain was due to regulated SpA production, and not dependent on the conformational change in SpA molecule expression through cell wall thickening. These results strongly suggest that suppressed SpA distribution on the EM-resistant <em>S. aureus</em> is a phenotypical characteristic in these strains.</p>","PeriodicalId":18338,"journal":{"name":"Medical Molecular Morphology","volume":"30 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Molecular Morphology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00795-023-00379-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To identify a new morphological phenotype of erythromycin (EM)-resistant Staphylococcus aureus (S. aureus) were isolated in vitro from EM-sensitive parent strain, and the distribution of staphylococcus specific protein A (SpA) on the surface of these strains was examined morphologically by using applied immunoelectron microscopy. The isolated EM-resistant strains had thickened cell walls, and the distribution of SpA on the surfaces of these strains was demonstrated to be lower than that of the parent strain. The SpA suppression was confirmed by enzyme-linked immunosorbent assay (ELISA) using fixed EM-resistant cells. Moreover, the spa gene of EM-resistant cells was detected by polymerase chain reaction (PCR) and confirmed by quantitative real-time PCR assay, showing that the expression of SpA was repressed at the transcriptional level in these strains. Furthermore, ELISA assay showed that whole EM-resistant cell SpA content was significantly decreased. Therefore, it was considered that the suppression of surface SpA on the EM-resistant strain was due to regulated SpA production, and not dependent on the conformational change in SpA molecule expression through cell wall thickening. These results strongly suggest that suppressed SpA distribution on the EM-resistant S. aureus is a phenotypical characteristic in these strains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金黄色葡萄球菌表面蛋白 A 的分布抑制是耐红霉素菌株的形态特征之一
摘要 从体外分离出对红霉素(EM)敏感的金黄色葡萄球菌(S. aureus)亲本菌株,并用免疫电镜从形态学上观察了这些菌株表面葡萄球菌特异性蛋白 A(SpA)的分布。分离出的抗 EM 菌株细胞壁增厚,这些菌株表面的 SpA 分布低于亲本菌株。使用固定的 EM 抗性细胞进行酶联免疫吸附试验(ELISA)证实了 SpA 的抑制作用。此外,聚合酶链式反应(PCR)检测了 EM 抗性细胞的 spa 基因,并通过实时定量 PCR 检测进行了确认,结果表明这些菌株在转录水平上抑制了 SpA 的表达。此外,酶联免疫吸附试验(ELISA)表明,整个抗 EM 细胞中的 SpA 含量明显降低。因此,可以认为抗EM菌株表面SpA的抑制是由于SpA的产生受到了调控,而不是依赖于细胞壁增厚导致的SpA分子表达构象变化。这些结果有力地表明,抗 EM 金黄色葡萄球菌的 SpA 分布受抑制是这些菌株的表型特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Molecular Morphology
Medical Molecular Morphology 医学-病理学
CiteScore
2.90
自引率
5.60%
发文量
30
审稿时长
>12 weeks
期刊介绍: Medical Molecular Morphology is an international forum for researchers in both basic and clinical medicine to present and discuss new research on the structural mechanisms and the processes of health and disease at the molecular level. The structures of molecules, organelles, cells, tissues, and organs determine their normal function. Disease is thus best understood in terms of structural changes in these different levels of biological organization, especially in molecules and molecular interactions as well as the cellular localization of chemical components. Medical Molecular Morphology welcomes articles on basic or clinical research in the fields of cell biology, molecular biology, and medical, veterinary, and dental sciences using techniques for structural research such as electron microscopy, confocal laser scanning microscopy, enzyme histochemistry, immunohistochemistry, radioautography, X-ray microanalysis, and in situ hybridization. Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.
期刊最新文献
Correction: Comprehensive analysis of transcription factors involved in odontoblast differentiation mechanism. High ambient temperature may induce presbyopia via TRPV1 activation. Comprehensive analysis of transcription factors involved in odontoblast differentiation mechanism. Nodal T follicular helper cell lymphoma with aberrant CD20 expression and monoclonal TCR, IG rearrangements secondary to Classical Hodgkin Lymphoma: a case report. Expression of miR-34a, RASSF1A and E-cadherin in relation to PRB in endometrioid carcinoma and its precursor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1