Numerical and Analytical Simulation of the Growth of Amyloid-β Plaques.

IF 1.7 4区 医学 Q4 BIOPHYSICS Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-06-01 DOI:10.1115/1.4064969
Andrey V Kuznetsov
{"title":"Numerical and Analytical Simulation of the Growth of Amyloid-β Plaques.","authors":"Andrey V Kuznetsov","doi":"10.1115/1.4064969","DOIUrl":null,"url":null,"abstract":"<p><p>Numerical and analytical solutions were employed to calculate the radius of an amyloid-β (Aβ) plaque over time. To the author's knowledge, this study presents the first model simulating the growth of Aβ plaques. Findings indicate that the plaque can attain a diameter of 50 μm after 20 years of growth, provided the Aβ monomer degradation machinery is malfunctioning. A mathematical model incorporates nucleation and autocatalytic growth processes using the Finke-Watzky model. The resulting system of ordinary differential equations was solved numerically, and for the simplified case of infinitely long Aβ monomer half-life, an analytical solution was found. Assuming that Aβ aggregates stick together and using the distance between the plaques as an input parameter of the model, it was possible to calculate the plaque radius from the concentration of Aβ aggregates. This led to the \"cube root hypothesis,\" positing that Aβ plaque size increases proportionally to the cube root of time. This hypothesis helps explain why larger plaques grow more slowly. Furthermore, the obtained results suggest that the plaque size is independent of the kinetic constants governing Aβ plaque agglomeration, indicating that the kinetics of Aβ plaque agglomeration is not a limiting factor for plaque growth. Instead, the plaque growth rate is limited by the rates of Aβ monomer production and degradation.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064969","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical and analytical solutions were employed to calculate the radius of an amyloid-β (Aβ) plaque over time. To the author's knowledge, this study presents the first model simulating the growth of Aβ plaques. Findings indicate that the plaque can attain a diameter of 50 μm after 20 years of growth, provided the Aβ monomer degradation machinery is malfunctioning. A mathematical model incorporates nucleation and autocatalytic growth processes using the Finke-Watzky model. The resulting system of ordinary differential equations was solved numerically, and for the simplified case of infinitely long Aβ monomer half-life, an analytical solution was found. Assuming that Aβ aggregates stick together and using the distance between the plaques as an input parameter of the model, it was possible to calculate the plaque radius from the concentration of Aβ aggregates. This led to the "cube root hypothesis," positing that Aβ plaque size increases proportionally to the cube root of time. This hypothesis helps explain why larger plaques grow more slowly. Furthermore, the obtained results suggest that the plaque size is independent of the kinetic constants governing Aβ plaque agglomeration, indicating that the kinetics of Aβ plaque agglomeration is not a limiting factor for plaque growth. Instead, the plaque growth rate is limited by the rates of Aβ monomer production and degradation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
淀粉样β斑块生长的数值和分析模拟
该研究采用数值和分析方法计算淀粉样β(Aβ)斑块随时间变化的半径。据作者所知,这项研究首次提出了模拟 Aβ 斑块生长的模型。研究结果表明,如果 Aβ 单体降解机制失灵,斑块在生长 20 年后直径可达到 50 μm。数学模型采用芬克-瓦茨基(Finke-Watzky)模型,纳入了成核和自催化生长过程。对由此产生的常微分方程系统进行了数值求解,并对 Aβ 单体半衰期无限长的简化情况找到了解析解。假设 Aβ 聚集体粘在一起,并使用斑块之间的距离作为模型的输入参数,就可以根据 Aβ 聚集体的浓度计算出斑块半径。由此产生了 "立方根假说",即 Aβ 斑块的大小与时间的立方根成比例增加。这一假说有助于解释为什么较大的斑块生长速度较慢。此外,研究结果表明,斑块大小与 Aβ 斑块聚集的动力学常数无关,这表明 Aβ 斑块聚集的动力学并不是斑块生长的限制因素。相反,斑块生长速度受到 Aβ 单体产生和降解速度的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
期刊最新文献
Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves. Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory. A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin. Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired. Topology Optimization Driven Bone-Remodeling Simulation for Lumbar Interbody Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1