Selective autophagy receptor‐encoding sequences in shallot transcriptome: In silico identification and expression patterns in response to asymptomatic shallot virus X infection
{"title":"Selective autophagy receptor‐encoding sequences in shallot transcriptome: In silico identification and expression patterns in response to asymptomatic shallot virus X infection","authors":"Valeriy K. Vishnichenko","doi":"10.1111/ppa.13887","DOIUrl":null,"url":null,"abstract":"Plant host tolerance is a key plant defence response to parasites, including viruses. This complex genetic trait involves multiple molecular mechanisms and, in particular, selective autophagy. Experimental data on the role of various selective autophagy factors and, in particular, cargo receptors in plant tolerance to viral infection are extremely limited. In this communication, I present the results of in silico identification of sequences in the shallot transcriptome encoding homologues of several selective autophagy receptors (SARs) related to the immune response and their expression patterns in response to asymptomatic infection of shallot virus X, a member of the genus <jats:italic>Allexivirus</jats:italic>, subgenus <jats:italic>Acarallexivirus</jats:italic>, within the family <jats:italic>Alphaflexiviridae</jats:italic>. The results obtained, together with the relevant literature data, suggest that some SARs likely to be involved in the regulation of the unfolded protein response and programmed cell death may play an active role in the formation of the state of tolerance of the host plant to allexivirus infection.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"33 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13887","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant host tolerance is a key plant defence response to parasites, including viruses. This complex genetic trait involves multiple molecular mechanisms and, in particular, selective autophagy. Experimental data on the role of various selective autophagy factors and, in particular, cargo receptors in plant tolerance to viral infection are extremely limited. In this communication, I present the results of in silico identification of sequences in the shallot transcriptome encoding homologues of several selective autophagy receptors (SARs) related to the immune response and their expression patterns in response to asymptomatic infection of shallot virus X, a member of the genus Allexivirus, subgenus Acarallexivirus, within the family Alphaflexiviridae. The results obtained, together with the relevant literature data, suggest that some SARs likely to be involved in the regulation of the unfolded protein response and programmed cell death may play an active role in the formation of the state of tolerance of the host plant to allexivirus infection.
期刊介绍:
This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.