S. M. Patomäki, M. F. Gonzalez-Zalba, M. A. Fogarty, Z. Cai, S. C. Benjamin, J. J. L. Morton
{"title":"Pipeline quantum processor architecture for silicon spin qubits","authors":"S. M. Patomäki, M. F. Gonzalez-Zalba, M. A. Fogarty, Z. Cai, S. C. Benjamin, J. J. L. Morton","doi":"10.1038/s41534-024-00823-y","DOIUrl":null,"url":null,"abstract":"<p>We propose a quantum processor architecture, the qubit ‘pipeline’, in which run-time scales additively as functions of circuit depth and run repetitions. Run-time control is applied globally, reducing the complexity of control and interconnect resources. This simplification is achieved by shuttling <i>N</i>-qubit states through a large layered physical array of structures which realise quantum logic gates in stages. Thus, the circuit depth corresponds to the number of layers of structures. Subsequent <i>N</i>-qubit states are ‘pipelined’ densely through the structures to efficiently wield the physical resources for repeated runs. Pipelining thus lends itself to noisy intermediate-scale quantum (NISQ) applications, such as variational quantum eigensolvers, which require numerous repetitions of the same or similar calculations. We illustrate the architecture by describing a realisation in the naturally high-density and scalable silicon spin qubit platform, which includes a universal gate set of sufficient fidelity under realistic assumptions of qubit variability.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"8 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00823-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a quantum processor architecture, the qubit ‘pipeline’, in which run-time scales additively as functions of circuit depth and run repetitions. Run-time control is applied globally, reducing the complexity of control and interconnect resources. This simplification is achieved by shuttling N-qubit states through a large layered physical array of structures which realise quantum logic gates in stages. Thus, the circuit depth corresponds to the number of layers of structures. Subsequent N-qubit states are ‘pipelined’ densely through the structures to efficiently wield the physical resources for repeated runs. Pipelining thus lends itself to noisy intermediate-scale quantum (NISQ) applications, such as variational quantum eigensolvers, which require numerous repetitions of the same or similar calculations. We illustrate the architecture by describing a realisation in the naturally high-density and scalable silicon spin qubit platform, which includes a universal gate set of sufficient fidelity under realistic assumptions of qubit variability.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.