Pipeline quantum processor architecture for silicon spin qubits

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-03-12 DOI:10.1038/s41534-024-00823-y
S. M. Patomäki, M. F. Gonzalez-Zalba, M. A. Fogarty, Z. Cai, S. C. Benjamin, J. J. L. Morton
{"title":"Pipeline quantum processor architecture for silicon spin qubits","authors":"S. M. Patomäki, M. F. Gonzalez-Zalba, M. A. Fogarty, Z. Cai, S. C. Benjamin, J. J. L. Morton","doi":"10.1038/s41534-024-00823-y","DOIUrl":null,"url":null,"abstract":"<p>We propose a quantum processor architecture, the qubit ‘pipeline’, in which run-time scales additively as functions of circuit depth and run repetitions. Run-time control is applied globally, reducing the complexity of control and interconnect resources. This simplification is achieved by shuttling <i>N</i>-qubit states through a large layered physical array of structures which realise quantum logic gates in stages. Thus, the circuit depth corresponds to the number of layers of structures. Subsequent <i>N</i>-qubit states are ‘pipelined’ densely through the structures to efficiently wield the physical resources for repeated runs. Pipelining thus lends itself to noisy intermediate-scale quantum (NISQ) applications, such as variational quantum eigensolvers, which require numerous repetitions of the same or similar calculations. We illustrate the architecture by describing a realisation in the naturally high-density and scalable silicon spin qubit platform, which includes a universal gate set of sufficient fidelity under realistic assumptions of qubit variability.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"8 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00823-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a quantum processor architecture, the qubit ‘pipeline’, in which run-time scales additively as functions of circuit depth and run repetitions. Run-time control is applied globally, reducing the complexity of control and interconnect resources. This simplification is achieved by shuttling N-qubit states through a large layered physical array of structures which realise quantum logic gates in stages. Thus, the circuit depth corresponds to the number of layers of structures. Subsequent N-qubit states are ‘pipelined’ densely through the structures to efficiently wield the physical resources for repeated runs. Pipelining thus lends itself to noisy intermediate-scale quantum (NISQ) applications, such as variational quantum eigensolvers, which require numerous repetitions of the same or similar calculations. We illustrate the architecture by describing a realisation in the naturally high-density and scalable silicon spin qubit platform, which includes a universal gate set of sufficient fidelity under realistic assumptions of qubit variability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅自旋量子比特的管道量子处理器架构
我们提出了一种量子处理器架构--量子比特 "流水线",其运行时间与电路深度和运行重复次数成加法关系。运行时间控制是全局性的,从而降低了控制和互连资源的复杂性。这种简化是通过将 N 个量子比特状态穿梭于分阶段实现量子逻辑门的大型分层物理结构阵列来实现的。因此,电路深度与结构层数相对应。随后的 N-qubit 状态通过密集的结构 "流水线 "传输,从而有效利用物理资源进行重复运行。因此,流水线技术适用于噪声中量子(NISQ)应用,例如需要多次重复相同或类似计算的变分量子求解器。我们通过描述在天然高密度和可扩展硅自旋量子比特平台上的实现来说明该架构,其中包括在量子比特可变性的现实假设下具有足够保真度的通用门集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Can quantum computers do nothing? Characterizing coherent errors using matrix-element amplification Many-body entanglement via ‘which-path’ information Hardware-tailored diagonalization circuits Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1