FPGA-Accelerated Range-Limited Molecular Dynamics

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-03-14 DOI:10.1109/TC.2024.3375613
Chunshu Wu;Chen Yang;Sahan Bandara;Tong Geng;Anqi Guo;Pouya Haghi;Ang Li;Martin Herbordt
{"title":"FPGA-Accelerated Range-Limited Molecular Dynamics","authors":"Chunshu Wu;Chen Yang;Sahan Bandara;Tong Geng;Anqi Guo;Pouya Haghi;Ang Li;Martin Herbordt","doi":"10.1109/TC.2024.3375613","DOIUrl":null,"url":null,"abstract":"Long timescale Molecular Dynamics (MD) simulation of small molecules is crucial in drug design and basic science. To accelerate a small data set that is executed for a large number of iterations, high-efficiency is required. Recent work in this domain has demonstrated that among COTS devices only FPGA-centric clusters can scale beyond a few processors. The problem addressed here is that, as the number of on-chip processors has increased from fewer than 10 into the hundreds, previous intra-chip routing solutions are no longer viable. We find, however, that through various design innovations, high efficiency can be maintained. These include replacing the previous broadcast networks with ring-routing and then augmenting the rings with out-of-order and caching mechanisms. Others are adding a level of hierarchical filtering and memory recycling. Two novel optimized architectures emerge, together with a number of variations. These are validated, analyzed, and evaluated. We find that in the domain of interest speed-ups over GPUs are achieved. The potential impact is that this system promises to be the basis for scalable long timescale MD with commodity clusters.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 6","pages":"1544-1558"},"PeriodicalIF":3.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10466389/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Long timescale Molecular Dynamics (MD) simulation of small molecules is crucial in drug design and basic science. To accelerate a small data set that is executed for a large number of iterations, high-efficiency is required. Recent work in this domain has demonstrated that among COTS devices only FPGA-centric clusters can scale beyond a few processors. The problem addressed here is that, as the number of on-chip processors has increased from fewer than 10 into the hundreds, previous intra-chip routing solutions are no longer viable. We find, however, that through various design innovations, high efficiency can be maintained. These include replacing the previous broadcast networks with ring-routing and then augmenting the rings with out-of-order and caching mechanisms. Others are adding a level of hierarchical filtering and memory recycling. Two novel optimized architectures emerge, together with a number of variations. These are validated, analyzed, and evaluated. We find that in the domain of interest speed-ups over GPUs are achieved. The potential impact is that this system promises to be the basis for scalable long timescale MD with commodity clusters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPGA 加速的限幅分子动力学
小分子的长时间尺度分子动力学(MD)模拟对药物设计和基础科学至关重要。要加速执行大量迭代的小数据集,就需要高效率。该领域的最新研究表明,在 COTS 设备中,只有以 FPGA 为中心的集群可以扩展到几个处理器以上。这里要解决的问题是,随着片上处理器数量从不到 10 个增加到数百个,以前的片内路由解决方案已不再可行。但我们发现,通过各种设计创新,可以保持高效率。这些创新包括用环形路由取代以前的广播网络,然后用失序和缓存机制增强环形路由。其他创新还包括增加分层过滤和内存循环。在此基础上,出现了两种新颖的优化架构以及多种变体。我们对这些架构进行了验证、分析和评估。我们发现,在我们感兴趣的领域中,速度比 GPU 更快。其潜在影响是,该系统有望成为使用商品集群进行可扩展的长时间尺度 MD 的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
CUSPX: Efficient GPU Implementations of Post-Quantum Signature SPHINCS+ Chiplet-Gym: Optimizing Chiplet-based AI Accelerator Design with Reinforcement Learning FLALM: A Flexible Low Area-Latency Montgomery Modular Multiplication on FPGA Novel Lagrange Multipliers-Driven Adaptive Offloading for Vehicular Edge Computing Leveraging GPU in Homomorphic Encryption: Framework Design and Analysis of BFV Variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1