New and improved bounds on the contextuality degree of multi-qubit configurations

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS Mathematical Structures in Computer Science Pub Date : 2024-04-18 DOI:10.1017/s0960129524000057
Axel Muller, Metod Saniga, Alain Giorgetti, Henri de Boutray, Frédéric Holweck
{"title":"New and improved bounds on the contextuality degree of multi-qubit configurations","authors":"Axel Muller, Metod Saniga, Alain Giorgetti, Henri de Boutray, Frédéric Holweck","doi":"10.1017/s0960129524000057","DOIUrl":null,"url":null,"abstract":"<p>We present algorithms and a C code to reveal quantum contextuality and evaluate the contextuality degree (a way to quantify contextuality) for a variety of point-line geometries located in binary symplectic polar spaces of small rank. With this code we were not only able to recover, in a more efficient way, all the results of a recent paper by de Boutray et al. [(2022). <span>Journal of Physics A: Mathematical and Theoretical</span> <span>55</span> 475301], but also arrived at a bunch of new noteworthy results. The paper first describes the algorithms and the C code. Then it illustrates its power on a number of subspaces of symplectic polar spaces whose rank ranges from 2 to 7. The most interesting new results include: (i) non-contextuality of configurations whose contexts are subspaces of dimension 2 and higher, (ii) non-existence of negative subspaces of dimension 3 and higher, (iii) considerably improved bounds for the contextuality degree of both elliptic and hyperbolic quadrics for rank 4, as well as for a particular subgeometry of the three-qubit space whose contexts are the lines of this space, (iv) proof for the non-contextuality of perpsets and, last but not least, (v) contextual nature of a distinguished subgeometry of a multi-qubit doily, called a two-spread, and computation of its contextuality degree. Finally, in the three-qubit polar space we correct and improve the contextuality degree of the full configuration and also describe finite geometric configurations formed by unsatisfiable/invalid constraints for both types of quadrics as well as for the geometry whose contexts are all 315 lines of the space.</p>","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"85 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000057","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present algorithms and a C code to reveal quantum contextuality and evaluate the contextuality degree (a way to quantify contextuality) for a variety of point-line geometries located in binary symplectic polar spaces of small rank. With this code we were not only able to recover, in a more efficient way, all the results of a recent paper by de Boutray et al. [(2022). Journal of Physics A: Mathematical and Theoretical 55 475301], but also arrived at a bunch of new noteworthy results. The paper first describes the algorithms and the C code. Then it illustrates its power on a number of subspaces of symplectic polar spaces whose rank ranges from 2 to 7. The most interesting new results include: (i) non-contextuality of configurations whose contexts are subspaces of dimension 2 and higher, (ii) non-existence of negative subspaces of dimension 3 and higher, (iii) considerably improved bounds for the contextuality degree of both elliptic and hyperbolic quadrics for rank 4, as well as for a particular subgeometry of the three-qubit space whose contexts are the lines of this space, (iv) proof for the non-contextuality of perpsets and, last but not least, (v) contextual nature of a distinguished subgeometry of a multi-qubit doily, called a two-spread, and computation of its contextuality degree. Finally, in the three-qubit polar space we correct and improve the contextuality degree of the full configuration and also describe finite geometric configurations formed by unsatisfiable/invalid constraints for both types of quadrics as well as for the geometry whose contexts are all 315 lines of the space.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多量子比特配置上下文度的新改进边界
我们提出了揭示量子情境性的算法和 C 代码,并评估了位于小秩二元交点极空间中的各种点线几何的情境性程度(量化情境性的一种方法)。有了这套代码,我们不仅能以更高效的方式恢复 de Boutray 等人最近发表的论文[(2022). 物理期刊 A:数学与理论 55 475301]中的所有结果,而且还得出了一系列值得注意的新结果。论文首先介绍了算法和 C 代码。然后说明了它在秩为 2 到 7 的交错极空间的一些子空间上的威力。最有趣的新结果包括(i) 上下文为维数为 2 或更高的子空间的构型的非上下文性,(ii) 维数为 3 或更高的负子空间的不存在性,(iii) 极大地改进了阶为 4 的椭圆和双曲四边形的上下文性程度边界、(iv)证明了周集的非上下文性,最后但并非最不重要的是,(v)证明了多比特多面体的一个杰出子几何(称为双展宽)的上下文性质及其上下文性度的计算。最后,在三比特极坐标空间中,我们修正并改进了完整构型的上下文度,还描述了由两类四面体以及上下文均为空间 315 条线的几何体的不可满足/无效约束所形成的有限几何构型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
期刊最新文献
On Hofmann–Streicher universes T0-spaces and the lower topology GADTs are not (Even partial) functors A linear linear lambda-calculus Countability constraints in order-theoretic approaches to computability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1