Axel Muller, Metod Saniga, Alain Giorgetti, Henri de Boutray, Frédéric Holweck
{"title":"New and improved bounds on the contextuality degree of multi-qubit configurations","authors":"Axel Muller, Metod Saniga, Alain Giorgetti, Henri de Boutray, Frédéric Holweck","doi":"10.1017/s0960129524000057","DOIUrl":null,"url":null,"abstract":"<p>We present algorithms and a C code to reveal quantum contextuality and evaluate the contextuality degree (a way to quantify contextuality) for a variety of point-line geometries located in binary symplectic polar spaces of small rank. With this code we were not only able to recover, in a more efficient way, all the results of a recent paper by de Boutray et al. [(2022). <span>Journal of Physics A: Mathematical and Theoretical</span> <span>55</span> 475301], but also arrived at a bunch of new noteworthy results. The paper first describes the algorithms and the C code. Then it illustrates its power on a number of subspaces of symplectic polar spaces whose rank ranges from 2 to 7. The most interesting new results include: (i) non-contextuality of configurations whose contexts are subspaces of dimension 2 and higher, (ii) non-existence of negative subspaces of dimension 3 and higher, (iii) considerably improved bounds for the contextuality degree of both elliptic and hyperbolic quadrics for rank 4, as well as for a particular subgeometry of the three-qubit space whose contexts are the lines of this space, (iv) proof for the non-contextuality of perpsets and, last but not least, (v) contextual nature of a distinguished subgeometry of a multi-qubit doily, called a two-spread, and computation of its contextuality degree. Finally, in the three-qubit polar space we correct and improve the contextuality degree of the full configuration and also describe finite geometric configurations formed by unsatisfiable/invalid constraints for both types of quadrics as well as for the geometry whose contexts are all 315 lines of the space.</p>","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"85 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000057","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present algorithms and a C code to reveal quantum contextuality and evaluate the contextuality degree (a way to quantify contextuality) for a variety of point-line geometries located in binary symplectic polar spaces of small rank. With this code we were not only able to recover, in a more efficient way, all the results of a recent paper by de Boutray et al. [(2022). Journal of Physics A: Mathematical and Theoretical55 475301], but also arrived at a bunch of new noteworthy results. The paper first describes the algorithms and the C code. Then it illustrates its power on a number of subspaces of symplectic polar spaces whose rank ranges from 2 to 7. The most interesting new results include: (i) non-contextuality of configurations whose contexts are subspaces of dimension 2 and higher, (ii) non-existence of negative subspaces of dimension 3 and higher, (iii) considerably improved bounds for the contextuality degree of both elliptic and hyperbolic quadrics for rank 4, as well as for a particular subgeometry of the three-qubit space whose contexts are the lines of this space, (iv) proof for the non-contextuality of perpsets and, last but not least, (v) contextual nature of a distinguished subgeometry of a multi-qubit doily, called a two-spread, and computation of its contextuality degree. Finally, in the three-qubit polar space we correct and improve the contextuality degree of the full configuration and also describe finite geometric configurations formed by unsatisfiable/invalid constraints for both types of quadrics as well as for the geometry whose contexts are all 315 lines of the space.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.