Minhui Zhang , Yongxiang Zheng , Sa Wang, Pengyu Wang, Jingbei Huang, Xiaotong Song, Rong Yu, Chun Zhang
{"title":"Soluble expression of recombinant human interleukin-2 in Escherichia coli and its facile production","authors":"Minhui Zhang , Yongxiang Zheng , Sa Wang, Pengyu Wang, Jingbei Huang, Xiaotong Song, Rong Yu, Chun Zhang","doi":"10.1016/j.pep.2024.106507","DOIUrl":null,"url":null,"abstract":"<div><p>Recombinant human interleukin-2 (rhIL-2) represents one of the most difficult-to-produce cytokines in <em>E. coli</em> due to its extreme hydrophobicity and high tendency to formation of inclusion bodies. Refolding of rhIL-2 inclusion bodies always represents cumbersome downstream processes and low production efficiency. Herein, we disclosed a fusion strategy for efficiently soluble expression and facile production of rhIL-2 in <em>E. coli</em> Origami B (DE3) host. A two-tandem SUMO fusion partner (His-2SUMO) with a unique SUMO protease cleavage site at C-terminus was devised to fuse with the N-terminus of rhIL-2 and the fusion protein (His-2SUMO-rhIL-2) was almost completely expressed in a soluble from. The fusion partner could be efficiently removed by Ulp1 cleavage and the rhIL-2 was simply produced by a two-step Ni-NTA affinity chromatography with a considerable purity and whole recovery. The eventually obtained rhIL-2 was well-characterized and the results showed that the purified rhIL-2 exhibits a compact and ordered structure. Although the finally obtained rhIL-2 exists in a soluble aggregates form and the aggregation probably has been occurred during expression stage, the soluble rhIL-2 aggregates remain exhibit comparable bioactivity with the commercially available rhIL-2 drug formulation.</p></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"221 ","pages":"Article 106507"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592824000792","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recombinant human interleukin-2 (rhIL-2) represents one of the most difficult-to-produce cytokines in E. coli due to its extreme hydrophobicity and high tendency to formation of inclusion bodies. Refolding of rhIL-2 inclusion bodies always represents cumbersome downstream processes and low production efficiency. Herein, we disclosed a fusion strategy for efficiently soluble expression and facile production of rhIL-2 in E. coli Origami B (DE3) host. A two-tandem SUMO fusion partner (His-2SUMO) with a unique SUMO protease cleavage site at C-terminus was devised to fuse with the N-terminus of rhIL-2 and the fusion protein (His-2SUMO-rhIL-2) was almost completely expressed in a soluble from. The fusion partner could be efficiently removed by Ulp1 cleavage and the rhIL-2 was simply produced by a two-step Ni-NTA affinity chromatography with a considerable purity and whole recovery. The eventually obtained rhIL-2 was well-characterized and the results showed that the purified rhIL-2 exhibits a compact and ordered structure. Although the finally obtained rhIL-2 exists in a soluble aggregates form and the aggregation probably has been occurred during expression stage, the soluble rhIL-2 aggregates remain exhibit comparable bioactivity with the commercially available rhIL-2 drug formulation.
期刊介绍:
Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.