Guojun Nan, Zixiang Shen, Haibo Du, Lanlin Yu, Wenwu Zhu
{"title":"Smart line planning method for power transmission based on D3QN-PER algorithm","authors":"Guojun Nan, Zixiang Shen, Haibo Du, Lanlin Yu, Wenwu Zhu","doi":"10.1049/cth2.12689","DOIUrl":null,"url":null,"abstract":"<p>The planning of power transmission line projects encompasses vast and complex geographical terrains. To address the complexity of transmission line planning and achieve lower line costs, this study proposes a novel intelligent line planning method. For the first time, it combines the Dueling Double Deep Q Network (D3QN) with the prioritized experience replay (PER) mechanism. First, correlate the reward function with metrics such as line length, number of corner points, and geographical environmental data, which are pertinent to the construction costs of power transmission line. Second, the D3QN algorithm is formulated by integrating Double DQN and Dueling DQN. The network's input information is divided into two components during training, aligning with the characteristics of power transmission line planning projects. Finally, the convergence efficiency of the algorithm is improved by using the PER mechanism for the problem of cost difference due to the different number of corner points in the planning path. In order to test the feasibility of the algorithm, we conducted experiments using real maps. Compared with the traditional ant colony optimization (ACO) algorithm, the D3QN-PER deep reinforcement learning algorithm reduces the line length by more than 4% and the number of corner points by more than 60%.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 17","pages":"2256-2266"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12689","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12689","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The planning of power transmission line projects encompasses vast and complex geographical terrains. To address the complexity of transmission line planning and achieve lower line costs, this study proposes a novel intelligent line planning method. For the first time, it combines the Dueling Double Deep Q Network (D3QN) with the prioritized experience replay (PER) mechanism. First, correlate the reward function with metrics such as line length, number of corner points, and geographical environmental data, which are pertinent to the construction costs of power transmission line. Second, the D3QN algorithm is formulated by integrating Double DQN and Dueling DQN. The network's input information is divided into two components during training, aligning with the characteristics of power transmission line planning projects. Finally, the convergence efficiency of the algorithm is improved by using the PER mechanism for the problem of cost difference due to the different number of corner points in the planning path. In order to test the feasibility of the algorithm, we conducted experiments using real maps. Compared with the traditional ant colony optimization (ACO) algorithm, the D3QN-PER deep reinforcement learning algorithm reduces the line length by more than 4% and the number of corner points by more than 60%.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.