{"title":"Testing the applicability of ground motion prediction equations for the Hainaut region (Belgium) using intensity data","authors":"Kris Vanneste, Ben Neefs, Thierry Camelbeeck","doi":"10.1007/s10518-024-01958-1","DOIUrl":null,"url":null,"abstract":"<div><p>In regions where strong earthquakes occurred before the deployment of dense seismic and accelerometric networks, intensity datasets can help select appropriate ground motion prediction equations (GMPEs) for seismic hazard studies. This is the case for the Hainaut seismic zone, which was one of the most seismically active zones in and around Belgium during the twentieth century. A recent reassessment of the intensity dataset of the area showed that intensities in this region attenuate much faster with distance than in other parts of northwestern Europe. Unfortunately, this characteristic has not yet been taken into account in current hazard maps for Belgium and northern France. Based on this dataset, we evaluate the goodness of fit of published GMPEs with intensities in Hainaut by means of a ground-motion-to-intensity conversion equation (GMICE) and according to different metrics (Likelihood, Log-likelihood and Euclidean-based Distance Ranking) published in literature. We also introduce a new measure to specifically evaluate the distance trend. Our results show that none of the tested GMPEs convincingly fits the intensity dataset, in particular the fast attenuation with distance. Nevertheless, applying the few GMPEs that show a reasonable fit in seismic hazard computations, we observe a decrease of the influence of the Hainaut seismicity on hazard maps for Belgium and northern France. This result is compatible with the earthquake intensity observations for the last 350 years in this part of Europe.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 10","pages":"5321 - 5345"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01958-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01958-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In regions where strong earthquakes occurred before the deployment of dense seismic and accelerometric networks, intensity datasets can help select appropriate ground motion prediction equations (GMPEs) for seismic hazard studies. This is the case for the Hainaut seismic zone, which was one of the most seismically active zones in and around Belgium during the twentieth century. A recent reassessment of the intensity dataset of the area showed that intensities in this region attenuate much faster with distance than in other parts of northwestern Europe. Unfortunately, this characteristic has not yet been taken into account in current hazard maps for Belgium and northern France. Based on this dataset, we evaluate the goodness of fit of published GMPEs with intensities in Hainaut by means of a ground-motion-to-intensity conversion equation (GMICE) and according to different metrics (Likelihood, Log-likelihood and Euclidean-based Distance Ranking) published in literature. We also introduce a new measure to specifically evaluate the distance trend. Our results show that none of the tested GMPEs convincingly fits the intensity dataset, in particular the fast attenuation with distance. Nevertheless, applying the few GMPEs that show a reasonable fit in seismic hazard computations, we observe a decrease of the influence of the Hainaut seismicity on hazard maps for Belgium and northern France. This result is compatible with the earthquake intensity observations for the last 350 years in this part of Europe.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.