Importance of isoleucine residue in ion channel formation ability of 11-residue peptaibols

IF 3.3 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic & Medicinal Chemistry Pub Date : 2024-07-15 DOI:10.1016/j.bmc.2024.117839
{"title":"Importance of isoleucine residue in ion channel formation ability of 11-residue peptaibols","authors":"","doi":"10.1016/j.bmc.2024.117839","DOIUrl":null,"url":null,"abstract":"<div><p>Peptaibols are a class of short peptides, typically 7 to 20 amino acids long, characterized by noncanonical amino acid residues such as aminoisobutyric acid (Aib). Although the helix length is shorter than the membrane thickness, the 11-residue peptaibol trichorovin-XII (TV-XII) can form ion channels in membranes. Assuming that a higher proportion of isoleucine (Ile) relative to leucine (Leu) residues is crucial for maintaining the ion channel activity of TV-XII, peptide analogs of TV-XII with varying Ile content were designed, synthesized, and evaluated. The secondary structure of all derivatives under hydrophobic conditions was confirmed by CD measurement as an α-helix-like β-bend ribbon spiral structure. The most stable ion channel activity was found in compound <strong>4a</strong> with maximum Ile. Furthermore, the C-terminal Ile analog showed greater ion channel activity compared to the Leu analog. This suggests that the choice between Leu and Ile can influence the expression of ion channel activity, which will be crucial for the <em>de novo</em> designed functional peptides.</p></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624002530","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptaibols are a class of short peptides, typically 7 to 20 amino acids long, characterized by noncanonical amino acid residues such as aminoisobutyric acid (Aib). Although the helix length is shorter than the membrane thickness, the 11-residue peptaibol trichorovin-XII (TV-XII) can form ion channels in membranes. Assuming that a higher proportion of isoleucine (Ile) relative to leucine (Leu) residues is crucial for maintaining the ion channel activity of TV-XII, peptide analogs of TV-XII with varying Ile content were designed, synthesized, and evaluated. The secondary structure of all derivatives under hydrophobic conditions was confirmed by CD measurement as an α-helix-like β-bend ribbon spiral structure. The most stable ion channel activity was found in compound 4a with maximum Ile. Furthermore, the C-terminal Ile analog showed greater ion channel activity compared to the Leu analog. This suggests that the choice between Leu and Ile can influence the expression of ion channel activity, which will be crucial for the de novo designed functional peptides.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异亮氨酸残基在 11 个残基的七叶皂苷形成离子通道能力中的重要性
Peptaibols 是一类短肽,通常长 7 至 20 个氨基酸,以氨基异丁酸(Aib)等非典型氨基酸残基为特征。虽然螺旋长度比膜厚度短,但 11 个残基的 peptaibol trichorovin-XII(TV-XII)可以在膜中形成离子通道。假设异亮氨酸(Ile)相对于亮氨酸(Leu)残基的比例较高是维持 TV-XII 离子通道活性的关键,我们设计、合成并评估了不同 Ile 含量的 TV-XII 肽类似物。通过 CD 测量证实,所有衍生物在疏水条件下的二级结构均为α-螺旋状的β-弯曲带螺旋结构。发现化合物 4a 的离子通道活性最稳定,其 Ile 含量最高。此外,与 Leu 类似物相比,C 端 Ile 类似物显示出更强的离子通道活性。这表明,Leu 和 Ile 之间的选择会影响离子通道活性的表达,这对从头设计功能肽至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioorganic & Medicinal Chemistry
Bioorganic & Medicinal Chemistry 医学-生化与分子生物学
CiteScore
6.80
自引率
2.90%
发文量
413
审稿时长
17 days
期刊介绍: Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides. The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.
期刊最新文献
A methamphetamine vaccine using short monoamine and diamine peptide linkers and poly-mannose Research progress of BRD4 in head and neck squamous cell carcinoma: Therapeutic application of novel strategies and mechanisms Design, synthesis and biological evaluation of novel diphenylamine analogues as NLRP3 inflammasome inhibitors Synthesis of phenanthridine derivatives by a water-compatible gold-catalyzed hydroamination Current pharmacophore based approaches for the development of new anti-Alzheimer’s agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1