{"title":"Microbial Tryptophan Metabolites Ameliorate Ovariectomy-Induced Bone Loss by Repairing Intestinal AhR-Mediated Gut-Bone Signaling Pathway","authors":"Chuan Chen, Zheng Cao, Hehua Lei, Cui Zhang, Mengjing Wu, Shaohua Huang, Xinzhi Li, Denghui Xie, Maili Liu, Limin Zhang, Gang Chen","doi":"10.1002/advs.202404545","DOIUrl":null,"url":null,"abstract":"<p>Microbial tryptophan (Trp) metabolites acting as aryl hydrocarbon receptor (AhR) ligands are shown to effectively improve metabolic diseases via regulating microbial community. However, the underlying mechanisms by which Trp metabolites ameliorate bone loss via gut-bone crosstalk are largely unknown. In this study, supplementation with Trp metabolites, indole acetic acid (IAA), and indole-3-propionic acid (IPA), markedly ameliorate bone loss by repairing intestinal barrier integrity in ovariectomy (OVX)-induced postmenopausal osteoporosis mice in an AhR-dependent manner. Mechanistically, intestinal AhR activation by Trp metabolites, especially IAA, effectively repairs intestinal barrier function by stimulating Wnt/β-catenin signaling pathway. Consequently, enhanced M2 macrophage by supplementation with IAA and IPA secrete large amount of IL-10 that expands from intestinal lamina propria to bone marrow, thereby simultaneously promoting osteoblastogenesis and inhibiting osteoclastogenesis in vivo and in vitro. Interestingly, supplementation with Trp metabolites exhibit negligible ameliorative effects on both gut homeostasis and bone loss of OVX mice with intestinal AhR knockout (Villin<sup>Cre</sup>Ahr<sup>fl/fl</sup>). These findings suggest that microbial Trp metabolites may be potential therapeutic candidates against osteoporosis via regulating AhR-mediated gut-bone axis.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 36","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202404545","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202404545","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial tryptophan (Trp) metabolites acting as aryl hydrocarbon receptor (AhR) ligands are shown to effectively improve metabolic diseases via regulating microbial community. However, the underlying mechanisms by which Trp metabolites ameliorate bone loss via gut-bone crosstalk are largely unknown. In this study, supplementation with Trp metabolites, indole acetic acid (IAA), and indole-3-propionic acid (IPA), markedly ameliorate bone loss by repairing intestinal barrier integrity in ovariectomy (OVX)-induced postmenopausal osteoporosis mice in an AhR-dependent manner. Mechanistically, intestinal AhR activation by Trp metabolites, especially IAA, effectively repairs intestinal barrier function by stimulating Wnt/β-catenin signaling pathway. Consequently, enhanced M2 macrophage by supplementation with IAA and IPA secrete large amount of IL-10 that expands from intestinal lamina propria to bone marrow, thereby simultaneously promoting osteoblastogenesis and inhibiting osteoclastogenesis in vivo and in vitro. Interestingly, supplementation with Trp metabolites exhibit negligible ameliorative effects on both gut homeostasis and bone loss of OVX mice with intestinal AhR knockout (VillinCreAhrfl/fl). These findings suggest that microbial Trp metabolites may be potential therapeutic candidates against osteoporosis via regulating AhR-mediated gut-bone axis.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.