Machine learning software for optimizing SME social media marketing campaigns

Wagobera Edgar Kedi, Chibundom Ejimuda, Courage Idemudia, Tochukwu Ignatius Ijomah
{"title":"Machine learning software for optimizing SME social media marketing campaigns","authors":"Wagobera Edgar Kedi, Chibundom Ejimuda, Courage Idemudia, Tochukwu Ignatius Ijomah","doi":"10.51594/csitrj.v5i7.1349","DOIUrl":null,"url":null,"abstract":"This review paper explores the transformative role of machine learning in optimizing social media marketing strategies for small and medium-sized enterprises (SMEs). It begins by highlighting the significance of social media marketing for SMEs, outlining the historical context of traditional marketing strategies, and examining current trends and emerging machine learning applications. The paper delves into the technical challenges of implementing machine learning, such as data quality, algorithm complexity, and system integration, as well as ethical concerns surrounding data privacy and algorithmic bias. SME-specific limitations are also discussed, including budget constraints and lack of technical expertise. Future directions focus on emerging technologies like deep learning and reinforcement learning, offering practical recommendations for SMEs to leverage these advancements effectively. The conclusion emphasizes the importance of embracing machine learning to achieve sustainable growth and competitive advantage in the digital marketplace. \nKeywords: Machine Learning, Social Media Marketing, SMEs, Data Privacy, Audience Targeting.         ","PeriodicalId":282796,"journal":{"name":"Computer Science & IT Research Journal","volume":"47 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & IT Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51594/csitrj.v5i7.1349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This review paper explores the transformative role of machine learning in optimizing social media marketing strategies for small and medium-sized enterprises (SMEs). It begins by highlighting the significance of social media marketing for SMEs, outlining the historical context of traditional marketing strategies, and examining current trends and emerging machine learning applications. The paper delves into the technical challenges of implementing machine learning, such as data quality, algorithm complexity, and system integration, as well as ethical concerns surrounding data privacy and algorithmic bias. SME-specific limitations are also discussed, including budget constraints and lack of technical expertise. Future directions focus on emerging technologies like deep learning and reinforcement learning, offering practical recommendations for SMEs to leverage these advancements effectively. The conclusion emphasizes the importance of embracing machine learning to achieve sustainable growth and competitive advantage in the digital marketplace. Keywords: Machine Learning, Social Media Marketing, SMEs, Data Privacy, Audience Targeting.         
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化中小企业社交媒体营销活动的机器学习软件
本文探讨了机器学习在优化中小企业社交媒体营销战略方面的变革性作用。文章首先强调了社交媒体营销对中小企业的重要意义,概述了传统营销策略的历史背景,并探讨了当前的趋势和新兴的机器学习应用。论文深入探讨了实施机器学习所面临的技术挑战,如数据质量、算法复杂性和系统集成,以及围绕数据隐私和算法偏见的道德问题。此外,还讨论了中小企业的具体限制,包括预算限制和缺乏专业技术知识。未来发展方向侧重于深度学习和强化学习等新兴技术,为中小企业有效利用这些先进技术提供了实用建议。结论强调了拥抱机器学习以在数字市场中实现可持续增长和竞争优势的重要性。关键词机器学习、社交媒体营销、中小企业、数据隐私、受众定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of pandemic in driving adoption of artificial intelligence in healthcare industry Challenges and strategies in securing smart environmental applications: A comprehensive review of cybersecurity measures Advances in machine learning-driven pore pressure prediction in complex geological settings Data science's pivotal role in enhancing oil recovery methods while minimizing environmental footprints: An insightful review Machine learning software for optimizing SME social media marketing campaigns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1