Persea Americana Leaf Extract-Derived Nanohybrids: A Sustainable and Green Approach for Rapid Photocatalytic Degradation of Organic Contaminants in Water

Sandeep Kumar Singh*, Sankeerthana Avasarala, Mahima S and Suryasarathi Bose*, 
{"title":"Persea Americana Leaf Extract-Derived Nanohybrids: A Sustainable and Green Approach for Rapid Photocatalytic Degradation of Organic Contaminants in Water","authors":"Sandeep Kumar Singh*,&nbsp;Sankeerthana Avasarala,&nbsp;Mahima S and Suryasarathi Bose*,&nbsp;","doi":"10.1021/acssusresmgt.4c0011810.1021/acssusresmgt.4c00118","DOIUrl":null,"url":null,"abstract":"<p >This study introduces a straightforward, sustainable, and eco-friendly approach to fabricating nanohybrids of TiO<sub>2</sub> integrated with carbon nanotubes (CNTs) derived from <i>Persea americana</i> leaves at ambient temperature, thus obviating the requirement for harmful chemicals. The <i>Persea americana</i> leaf extracts serve as both reducing and capping agents, and the reaction at room temperature enables precise control over the nucleation and growth of anisotropic TiO<sub>2</sub> particles within the nanohybrid structure. Surface morphology analysis reveals a mitochondria-like morphology with distorted spherical tips for the TiO<sub>2</sub> particles, while the CNTs act as connecting bridges. TEM analysis confirms that the CNTs are multiwalled, and TiO<sub>2</sub> exhibits a crystallite size of around 12.1 nm. X-ray diffraction analysis revealed that the synthesized TiO<sub>2</sub> exhibits the anatase phase. Assessment of the photocatalytic performance using methylene blue (MB) as a model contaminant demonstrates remarkable results, with the nanohybrid achieving 99.80% degradation of the dye and over 98.3% degradation within an hour under both UV and visible light, respectively. Furthermore, the TiO<sub>2</sub>/CNT nanohybrid exhibits excellent recyclability even after numerous cycles, consistently achieving dye removal exceeding 99.99%. Overall, the TiO<sub>2</sub>/CNT nanohybrid demonstrates the rapid and efficient removal of hazardous dyes from industrial water waste while maintaining its degradation efficiency over multiple uses. Additionally, its sustainable and straightforward synthesis methods make it a promising advanced material for water remediation applications.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 7","pages":"1501–1511 1501–1511"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a straightforward, sustainable, and eco-friendly approach to fabricating nanohybrids of TiO2 integrated with carbon nanotubes (CNTs) derived from Persea americana leaves at ambient temperature, thus obviating the requirement for harmful chemicals. The Persea americana leaf extracts serve as both reducing and capping agents, and the reaction at room temperature enables precise control over the nucleation and growth of anisotropic TiO2 particles within the nanohybrid structure. Surface morphology analysis reveals a mitochondria-like morphology with distorted spherical tips for the TiO2 particles, while the CNTs act as connecting bridges. TEM analysis confirms that the CNTs are multiwalled, and TiO2 exhibits a crystallite size of around 12.1 nm. X-ray diffraction analysis revealed that the synthesized TiO2 exhibits the anatase phase. Assessment of the photocatalytic performance using methylene blue (MB) as a model contaminant demonstrates remarkable results, with the nanohybrid achieving 99.80% degradation of the dye and over 98.3% degradation within an hour under both UV and visible light, respectively. Furthermore, the TiO2/CNT nanohybrid exhibits excellent recyclability even after numerous cycles, consistently achieving dye removal exceeding 99.99%. Overall, the TiO2/CNT nanohybrid demonstrates the rapid and efficient removal of hazardous dyes from industrial water waste while maintaining its degradation efficiency over multiple uses. Additionally, its sustainable and straightforward synthesis methods make it a promising advanced material for water remediation applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美洲鲈鱼叶提取物衍生纳米混合体:快速光催化降解水中有机污染物的可持续绿色方法
本研究介绍了一种直接、可持续和生态友好的方法,可在环境温度下制造出集成了茜草叶碳纳米管(CNT)的二氧化钛纳米杂化物,从而避免了对有害化学物质的需求。波斯菊叶提取物既是还原剂又是封端剂,在室温下进行反应可精确控制纳米杂化结构中各向异性二氧化钛颗粒的成核和生长。表面形态分析表明,TiO2 颗粒具有类似线粒体的变形球形顶端形态,而 CNT 起到了连接桥梁的作用。TEM 分析证实,CNT 为多壁,TiO2 的晶粒大小约为 12.1 纳米。X 射线衍射分析表明,合成的 TiO2 呈锐钛矿相。以亚甲基蓝(MB)为模型污染物进行的光催化性能评估结果表明,该纳米杂化物在紫外线和可见光下的染料降解率分别达到 99.80%和 98.3%以上。此外,即使经过多次循环,TiO2/CNT 纳米杂化物也表现出卓越的可回收性,染料去除率始终超过 99.99%。总之,TiO2/CNT 纳米杂化物能够快速、高效地去除工业废水中的有害染料,同时在多次使用后仍能保持其降解效率。此外,其可持续和简单的合成方法使其成为一种很有前途的先进水修复应用材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Publication Information Issue Editorial Masthead Policies and Regulations for Sustainable Resource Management: How Governments Play a Key Role in This International Endeavor Self-Driven SiO2/C Nanocomposites from Cultured Diatom Microalgae for Sustainable Li-Ion Battery Anodes: The Role of Impurities Microalgae for the Extraction and Separation of Rare Earths: An STXM Study of Ce, Gd, and P
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1