Ligninsulfonate-Derived Porous Sulfonated Carbon Using Templating Method for the Alkylation of Hemicellulose-Derived Furfurals to Biodiesel Precursors

Shijie Fang, Yanchang Chu, Zhiting Gong, Rui Ma* and Le Yang*, 
{"title":"Ligninsulfonate-Derived Porous Sulfonated Carbon Using Templating Method for the Alkylation of Hemicellulose-Derived Furfurals to Biodiesel Precursors","authors":"Shijie Fang,&nbsp;Yanchang Chu,&nbsp;Zhiting Gong,&nbsp;Rui Ma* and Le Yang*,&nbsp;","doi":"10.1021/acssusresmgt.4c0020410.1021/acssusresmgt.4c00204","DOIUrl":null,"url":null,"abstract":"<p >This work provides a method to transform sodium lignosulfonate into sulfonated carbon materials through chemical activation using magnesium salt as a template instead of using conventional sulfonation agents, such as concentrated sulfuric acid or chlorosulfonic acid. Several magnesium salts, including magnesium nitrate, magnesium chloride, magnesium acetate, and magnesium citrate, are employed as activating templates for comparison, and magnesium nitrate turns out with the most abundant sulfonic acid group density of 1.35 mmol/g and highest specific surface area of 512 m<sup>2</sup>/g. Especially, the effect of magnesium salts during carbonization process on the structure evolution is explored using tandem thermogravimetric-mass spectrometry and reveals that magnesium nitrate prevents sulfur loss in the form of SO<sub>2</sub>, SO<sub>3</sub>, or H<sub>2</sub>S during carbonization, thus exhibiting the most abundant sulfonic acid group. These sulfonated carbon materials are tested in the alkylation reaction of furfural and 2-methylfuran to produce a C15 precursor of biodiesel, where the conversion of furfural and selectivity for 5,5-(furan-2-ylmethylene)bis(2-methylfuran) reach 90.2% and 87.2% at 70 °C for 6 h, respectively. This investigation underscores the efficient utilization of sulfonic acid functional groups inherent in sodium lignosulfonate to produce sulfonated carbon materials without the introduction of an exterior sulfur source and opens avenues for a broader application of lignosulfonates.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 7","pages":"1594–1604 1594–1604"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work provides a method to transform sodium lignosulfonate into sulfonated carbon materials through chemical activation using magnesium salt as a template instead of using conventional sulfonation agents, such as concentrated sulfuric acid or chlorosulfonic acid. Several magnesium salts, including magnesium nitrate, magnesium chloride, magnesium acetate, and magnesium citrate, are employed as activating templates for comparison, and magnesium nitrate turns out with the most abundant sulfonic acid group density of 1.35 mmol/g and highest specific surface area of 512 m2/g. Especially, the effect of magnesium salts during carbonization process on the structure evolution is explored using tandem thermogravimetric-mass spectrometry and reveals that magnesium nitrate prevents sulfur loss in the form of SO2, SO3, or H2S during carbonization, thus exhibiting the most abundant sulfonic acid group. These sulfonated carbon materials are tested in the alkylation reaction of furfural and 2-methylfuran to produce a C15 precursor of biodiesel, where the conversion of furfural and selectivity for 5,5-(furan-2-ylmethylene)bis(2-methylfuran) reach 90.2% and 87.2% at 70 °C for 6 h, respectively. This investigation underscores the efficient utilization of sulfonic acid functional groups inherent in sodium lignosulfonate to produce sulfonated carbon materials without the introduction of an exterior sulfur source and opens avenues for a broader application of lignosulfonates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用模板法将木质素磺酸盐衍生的多孔磺化碳烷基化为生物柴油前体的半纤维素衍生糠醛
本研究提供了一种以镁盐为模板,而不是使用浓硫酸或氯磺酸等传统磺化剂,通过化学活化将木质素磺酸钠转化为磺化碳材料的方法。比较了硝酸镁、氯化镁、醋酸镁和柠檬酸镁等几种镁盐作为活化模板,结果发现硝酸镁的磺酸基密度最高,为 1.35 mmol/g,比表面积最大,为 512 m2/g。特别是利用串联热重-质谱法探讨了镁盐在碳化过程中对结构演变的影响,结果表明硝酸镁可防止硫以 SO2、SO3 或 H2S 的形式在碳化过程中流失,从而表现出最丰富的磺酸基团。这些磺化碳材料在糠醛和 2-甲基呋喃的烷基化反应中进行了测试,以生成生物柴油的 C15 前体,在 70 °C 下反应 6 小时,糠醛的转化率和 5,5-(呋喃-2-基亚基)双(2-甲基呋喃)的选择性分别达到 90.2% 和 87.2%。这项研究强调了木质素磺酸钠中固有的磺酸官能团在不引入外部硫源的情况下生产磺化碳材料的高效利用,并为木质素磺酸盐的更广泛应用开辟了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Publication Information Issue Editorial Masthead A Sustainable Manufacturing Paradigm to Address Grand Challenges in Sustainability and Climate Change Deep Eutectic Solvent-Aqueous Two-Phase Leaching System for Direct Separation of Lithium and Critical Metals The Use of Grape Pomace as Soil Fertilizer: A Microcosm Study on Available C and N and Consequences for Microbial Biomass, Structure, and Catabolic Responses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1