Georgina B. Armstrong*, Alan Lewis, Vidhi Shah, Paul Taylor, Craig J. Jamieson, Glenn A. Burley, William Lewis and Zahra Rattray*,
{"title":"A First Insight into the Developability of an Immunoglobulin G3: A Combined Computational and Experimental Approach","authors":"Georgina B. Armstrong*, Alan Lewis, Vidhi Shah, Paul Taylor, Craig J. Jamieson, Glenn A. Burley, William Lewis and Zahra Rattray*, ","doi":"10.1021/acsptsci.4c0027110.1021/acsptsci.4c00271","DOIUrl":null,"url":null,"abstract":"<p >Immunoglobulin G 3 (IgG3) monoclonal antibodies (mAbs) are high-value scaffolds for developing novel therapies. Despite their wide-ranging therapeutic potential, IgG3 physicochemical properties and developability characteristics remain largely under-characterized. Protein–protein interactions elevate solution viscosity in high-concentration formulations, impacting physicochemical stability, manufacturability, and the injectability of mAbs. Therefore, in this manuscript, the key molecular descriptors and biophysical properties of a model anti-IL-8 IgG1 and its IgG3 ortholog are characterized. A computational and experimental framework was applied to measure molecular descriptors impacting their downstream developability. Findings from this approach underpin a detailed understanding of the molecular characteristics of IgG3 mAbs as potential therapeutic entities. This work is the first report examining the manufacturability of IgG3 for high-concentration mAb formulations. While poorer conformational and colloidal stability and elevated solution viscosity were observed for IgG3, future efforts controlling surface potential through sequence-engineering of solvent-accessible patches can be used to improve biophysical parameters that dictate mAb developability.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2439–2451 2439–2451"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00271","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Immunoglobulin G 3 (IgG3) monoclonal antibodies (mAbs) are high-value scaffolds for developing novel therapies. Despite their wide-ranging therapeutic potential, IgG3 physicochemical properties and developability characteristics remain largely under-characterized. Protein–protein interactions elevate solution viscosity in high-concentration formulations, impacting physicochemical stability, manufacturability, and the injectability of mAbs. Therefore, in this manuscript, the key molecular descriptors and biophysical properties of a model anti-IL-8 IgG1 and its IgG3 ortholog are characterized. A computational and experimental framework was applied to measure molecular descriptors impacting their downstream developability. Findings from this approach underpin a detailed understanding of the molecular characteristics of IgG3 mAbs as potential therapeutic entities. This work is the first report examining the manufacturability of IgG3 for high-concentration mAb formulations. While poorer conformational and colloidal stability and elevated solution viscosity were observed for IgG3, future efforts controlling surface potential through sequence-engineering of solvent-accessible patches can be used to improve biophysical parameters that dictate mAb developability.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.